

COUNTEREXAMPLES ON THE IMAGES OF LOCALLY SEPARABLE METRIC SPACES

SHOU LIN AND MASAMI SAKAI

ABSTRACT. In this paper, we give negative answers to several questions on the images of locally separable, metric spaces.

1. INTRODUCTION

All spaces considered here are assumed to be regular T_1 .

First, we recall some definitions.

The symbol \mathbb{N} is the set of positive integers.

A continuous map is called an s-map if each fiber of the map is separable.

A continuous map $f : X \to Y$ is called *compact-covering* if every compact $K \subset Y$ is the image of a compact $C \subset X$.

Let \mathcal{P} be a family of subsets of a space X. Then \mathcal{P} is called a *cs-network* [5] if for any sequence $\{x_n\}_{n\in\mathbb{N}}$ converging to a point $x \in X$ and any neighborhood U of x, there exist $P \in \mathcal{P}$ and $m \in \mathbb{N}$ such that $\{x, x_n : n \geq m\} \subset P \subset U$. \mathcal{P} is called a *cs*-network* [3] if for any sequence $\{x_n\}_{n\in\mathbb{N}}$ converging to a point $x \in X$ and any neighborhood U of x, there exist $P \in \mathcal{P}$ and a subsequence $\{x_{n_j}\}_{j\in\mathbb{N}}$ of $\{x_n\}_{n\in\mathbb{N}}$ such that $\{x, x_{n_j} : j \in \mathbb{N}\} \subset P \subset U$. \mathcal{P} is called a *k-network* [15] if for any compact set $K \subset X$ and an open set U with $K \subset U$, there exists a finite subfamily $\mathcal{P}' \subset \mathcal{P}$ such that

²⁰⁰⁰ Mathematics Subject Classification. 54A20, 54B15, 54C10, 54G20.

Key words and phrases. cs-network, cs^* -network, k-network, s-map.

The first author (corresponding author) is supported by the NSF of Fujian Province of China (No. 2006J0397) and the NSFC (No. 10571151).

^{©2007} Topology Proceedings.

 $K \subset \bigcup \mathcal{P}' \subset U.$

A space is called an \aleph_0 -space [14] if it has a countable k-network.

In this paper, we give negative answers to the following questions.

Question 1.1. [9, Conjecture 5.1.3] Let X be a quotient *s*-image of a metric space. Is X a quotient *s*-image of a locally separable, metric space if each first countable subset of X is locally separable?

Question 1.2. [11, Question 3.4] Let X be a regular Fréchet space with a point-countable k-network. Is X a closed image of a locally separable, metric space if each first countable closed subspace of X is locally separable?

Question 1.3. [8, Question 6] Let X be a regular Fréchet space with a point-countable k-network. Is X a space with a pointcountable k-network consisting of separable subsets of X if each first countable closed subspace of X is locally separable?

Question 1.4. [13, Question 1.2] Is it true that a space X is a closed s-image of a locally separable, metric space if and only if X is a regular Fréchet space with a point-countable cs^* -network, and each first countable closed subspace of X is locally separable?

Question 1.5. [12, Question 2.6(2)] Is a hereditarily separable, sequential space with a point-countable cs^* -network an \aleph_0 -space?

Question 1.6. [10, Question 3.6] Let X be a quotient *s*-image of a metric space. Is X a quotient *s*-image of a locally compact, metric space if each first countable closed subset of X is locally compact?

Since a space X is a closed image of a locally separable, metric space if and only if X is a Fréchet space with a point-countable k-network consisting of separable subsets of X [16, Corollary 3.6], Question 1.2 and Question 1.3 are equivalent.

2. Counterexamples

First, we answer Question 1.1 through Question 1.4. We recall the space Y constructed in [18, Example 2.3]. Let P be a Bernstein set of the closed unit interval $\mathbb{I} = [0, 1]$ [2, p. 339]. In other words, P is an uncountable set which contains no uncountable closed set of \mathbb{I} . Let X be the space obtained from \mathbb{I} by isolating the points of

182

P. The space X was considered in [4, Example 9.4]. Our space Y is the quotient space obtained from X by collapsing the set $X \setminus P$ to the one-point ∞ .

Proposition 2.1. [18, Example 2.3] *The space Y has the following properties.*

- (1) Y is regular T_1 and Fréchet;
- (2) Y has a point-countable closed family P which is both a cs-network (hence, cs*-network) and a k-network;
- (3) every first countable closed subset of Y is countable;
- (4) Y does not have any star-countable k-network.

We observe further properties of Y. By combining Proposition 2.1 with Theorem 2.2 below, we can easily see that Y is a counterexample for Question 1.1 through Question 1.4.

Theorem 2.2. The space Y has the following properties, too.

- (a) Y is a quotient s-image of a metric space;
- (b) every first countable subset of Y is a discrete space or a countable space; hence, every first countable subset of Y is locally separable;
- (c) Y does not have any point-countable cs*-network of separable subsets; in particular, Y is not a quotient s-image of a locally separable, metric space;
- (d) Y is not a closed image of a locally separable, metric space;
- (e) Y does not have any point-countable k-network consisting of separable subsets.

Proof: (a) It is proved in [4, p. 315] that every k-space with a point-countable k-network of closed sets is a quotient s-image of a metric space.

(b) Let A be a first countable subset of Y. If $\infty \notin A$, then A is discrete. Assume $\infty \in A$. Then A is closed in Y; hence, A is countable by Proposition 2.1(3).

(c) If Y has a point-countable cs^* -network of separable subsets, then Y has a point-countable k-network of separable subsets since each point-countable cs^* -network for a sequential space is a pointcountable k-network [19, Corollary 1.5]. Hence, (e) implies (c). It is known in [12, Theorem 2.2] that if a space is a quotient s-image of a locally separable, metric space, then it has a pointcountable cs^* -network of separable subsets. Hence, Y is not a quotient s-image of a locally separable, metric space.

(d) It is known in [16, Corollary 3.6] that a space is a closed image of a locally separable, metric space if and only if it is a Fréchet space with a star-countable k-network. Apply Proposition 2.1(4).

(e) It is known in [16, Theorem 3.5] that every Fréchet space with a point-countable k-network consisting of separable subsets has a star-countable k-network. Apply Proposition 2.1(4).

We remark that the following two statements are incorrect in view of our example Y.

Statement 2.3. [12, Lemma 2.4] Suppose \mathcal{P} is a point-countable collection of subsets of X, which is closed under finite intersections. Let

 $\mathcal{H} = \{ P \in \mathcal{P} : P \text{ is a hereditarily separable subspace of } X \}.$

Then \mathcal{H} is a cs^* -network for X if and only if \mathcal{P} is a cs^* -network for X and every first countable subspace of X is locally separable.

Statement 2.4. [12, Corollary 2.5] The following conditions are equivalent for a space X:

- (i) X is a quotient s-image of a metric space and every first countable subspace of X is locally separable;
- (ii) X is a sequential space with a point-countable cs^* -network consisting of hereditarily separable subspaces.

Indeed, let \mathcal{P} be a point-countable cs^* -network for Y; see Proposition 2.1(2). Consider the family $\mathcal{P}' = \{P_0 \cap \cdots \cap P_n : P_i \in \mathcal{P}, n \in \omega\}$. A point-countable cs^* -network is closed under finite intersections. But $\mathcal{H} = \{P \in \mathcal{P}' : P \text{ is hereditarily separable}\}$ is not a cs^* -network by Theorem 2.2 (c). Thus, Statement 2.3 is incorrect.

By Theorem 2.2(a) and (b), Y satisfies condition (i) in Statement 2.4. But Y does not satisfy condition (ii) in Statement 2.4 by Theorem 2.2(c). Thus, Statement 2.4 is also incorrect.

Next, we answer Question 1.5. In [20, Example 1.6(2)], a space X_A is constructed as follows. Let A be an uncountable subset of the

184

closed unit interval I. For each $x \in A$, let $S_x = \{(x,0)\} \cup \{(x,1/n) : n \in \mathbb{N}\}$, and let

$$\mathcal{C} = \{S_x : x \in A\} \cup \{A \times \{0\}\} \cup \{\mathbb{I} \times \{1/n\} : n \in \mathbb{N}\},\$$

where each element of \mathcal{C} has the usual topology. Set

$$X_A = (A \times \{0\}) \cup (\cup \{\mathbb{I} \times \{1/n\} : n \in \mathbb{N}\}),\$$

and let its topology be determined by the cover C. It is known in [12, Theorem 2.2] that if a space is a quotient *s*-image of a locally separable, metric space, then it has a point-countable cs^* -network. Since X_A is a quotient *s*-image of the locally separable, metric space $\oplus \{C : C \in C\}$, it has a point-countable cs^* -network. Since the subspaces $A \times \{0\}$ and $\bigcup_{n \in \mathbb{N}} \mathbb{I} \times \{1/n\}$ of X_A have the usual Euclidean topology, X_A has a countable network; in particular, X_A is hereditarily separable. It was proved in [6, Example 4.1(7)] that X_A has not any star-countable *k*-network. Therefore, X_A is not an \aleph_0 -space.

In general, X_A is not regular [17].

Definition 2.5 ([17]). A subset A of the real line is called a σ' -set if for every F_{σ} -set F of the real line, there is an F_{σ} -set H in the real line such that $F \cap H = \emptyset$ and $A \subset F \cup H$.

It is known that the Continuum Hypothesis implies the existence of an uncountable σ' -set [17].

Lemma 2.6. [17, Theorem 2.2] Let A be a non-empty subset of \mathbb{I} . Then A is a σ' -set if and only if X_A is regular.

Let A be an uncountable σ' -set in \mathbb{I} under the Continuum Hypothesis. By Lemma 2.6 and the observations on X_A , X_A is a counterexample to Question 1.5.

Finally, we remark that Question 1.6 is also negative. By using a σ' -set, Huaipeng Chen in [1, Example 4.5] constructed a space X satisfying the following properties.

- (1) X is regular T_1 , and a quotient s-image of a metric space;
- (2) every first countable closed subspace of X is locally compact;
- (3) X is not a compact-covering s-image of any metric space.

S. LIN AND M. SAKAI

It was proved in [7, Theorem 1] that each quotient s-image of a locally compact, metric space is a compact-covering quotient simage of a locally compact, metric space. By property (3) above, Chen's space X is not a quotient s-image of a locally compact, metric space since X is not a compact-covering quotient s-image of a locally compact, metric space. This contradicts property (3) above. Hence, X is a counterexample to Question 1.6.

References

- Huaipeng Chen, Compact-covering maps and k-networks, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2623–2632 (electronic).
- [2] Ryszard Engelking, *General Topology*. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [3] Zhi Min Gao, ℵ-space is invariant under perfect mappings, Questions Answers Gen. Topology 5 (1987), no. 2, 271–279.
- [4] G. Gruenhage, E. Michael, and Y. Tanaka, Spaces determined by pointcountable covers, Pacific J. Math. 113 (1984), no. 2, 303–332.
- [5] J. A. Guthrie, A characterization of ℵ₀-spaces, General Topology and Appl. 1 (1971), no. 2, 105–110.
- [6] Yoshito Ikeda and Yoshio Tanaka, Spaces having star-countable k-networks, Topology Proc. 18 (1993), 107–132.
- [7] Zhao Wen Li and Jin Jing Li, On Michael-Nagami's problem, Questions Answers Gen. Topology 12 (1994), no. 1, 85–91.
- [8] Jinjin Li and Shou Lin, k-systems, k-networks and k-covers, Czechoslovak Math. J. 56(131) (2006), no. 1, 239–245.
- [9] Shou Lin, Point-Countable Coverings and Sequence-Covering Mappings (Chinese). With a preface by A. V. Arhangel'skii. Chinese Distinguished Scholars Foundation Academic Publications. Beijing: Science Press, 2002.
- [10] _____, A note on closed images of locally compact metric spaces, Acta Math. Hungar. 109 (2005), no. 1-2, 157–162.
- [11] Shou Lin and Chuan Liu, k-space property of $S_{\omega} \times X$ and related results (Chinese), Acta Math. Sinica (Chin. Ser.) **49** (2006), no. 1, 29–38.
- [12] Shou Lin, Chuan Liu, and Mumin Dai, Images on locally separable metric spaces, Acta Math. Sinica (N.S.) 13 (1997), no. 1, 1–8.
- [13] Shou Lin and Pengfei Yan, A note on closed s-images of locally separable metric spaces (Chinese). Acta Math. Sci., Series A 27A (2007), no. 1, 171–175.
- [14] E. Michael, ℵ₀-spaces, J. Math. Mech. **15** (1966), 983–1002.
- [15] Paul O'Meara, On paracompactness in function spaces with the compactopen topology, Proc. Amer. Math. Soc. 29 (1971), 183–189.

186

- [16] Masami Sakai, On spaces with a star-countable k-network, Houston J. Math. 23 (1997), no. 1, 45–56.
- [17] _____, A special subset of the real line and regularity of weak topologies, Topology Proc. 23 (1998), Spring, 281–287.
- [18] _____, Counterexamples on generalized metric spaces, Sci. Math. Jpn. 64 (2006), no. 1, 73–76.
- [19] Yoshio Tanaka, Point-countable covers and k-networks, Topology Proc. 12 (1987), no. 2, 327–349.
- [20] Yoshio Tanaka and Hao Xuan Zhou, Spaces determined by metric subsets, and their character, Questions Answers Gen. Topology 3 (1985/86), no. 2, 145–160.

(Lin) Department of Mathematics; Zhangzhou Normal University; Fujian 363000, P.R. China; and

Institute of Mathematics, Ningde Teachers' College; Fujian 352100, P.R. China

E-mail address: linshou@public.ndptt.fj.cn

(Sakai) DEPARTMENT OF MATHEMATICS; KANAGAWA UNIVERSITY; YOKO-HAMA 221-8686, JAPAN

E-mail address: sakaim01@kanagawa-u.ac.jp