Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Generalized metric spaces with algebraic structures

Chuan Liu^{a,*}, Shou Lin^{b,c,1}

^a Department of Mathematics, Ohio University Zanesville Campus, Zanesville, OH 43701, USA

^b Institute of Mathematics, Ningde Teachers' College, Ningde, Fujian 352100, PR China

^c Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, PR China

ARTICLE INFO

Article history: Received 1 September 2009 Received in revised form 13 April 2010

MSC: 54E35 54E20 54H11 22A05

Keywords: Paratopological groups Topological groups Developable spaces Point-countable covers k-networks π -bases

1. Introduction

ABSTRACT

We discuss generalized metrizable properties on paratopological groups and topological groups. It is proved in this paper that a first-countable paratopological group which is a β -space is developable; and we construct a Hausdorff, separable, non-metrizable paratopological group which is developable. We consider paratopological (topological) groups determined by a point-countable first-countable subspaces and give partial answers to Arhangel'skii's conjecture; Nogura–Shakhmatov–Tanaka's question (Nogura et al., 1993 [23]). We also give a negative answer to a question in Cao et al. (in press) [10]. Finally, remainders of topological groups and paratopological groups are discussed and Arhangel'skii's Theorem (Arhangel'skii, 2007 [3]) is improved.

© 2010 Elsevier B.V. All rights reserved.

This paper is devoted to discussing the generalized metrizable properties on topological algebra. As is known to all, every first-countable topological group is metrizable. However, this does not hold for paratopological group. The Sorgenfrey line [11, Example 1.2.2] with the usual addition is a first-countable paratopological group but not metrizable. More even, we can see in Example 2.1 that a developable paratopological group is unnecessary to be metrizable. We prove that every paratopological group with a left-invariant symmetric is metrizable. Also we discuss the following questions:

Question 1.1 (*Arhangel'skii conjecture*). S_{ω_1} cannot be embedded into a sequential topological group.

Question 1.2. ([19, Problem 15]) Let *G* be a topological group which is a *k*-space with a σ -compact-finite *k*-network, or a space with a point-countable determining cover by metric spaces. Is *G* paracompact (or meta-Lindelöf)?

Question 1.3. ([23, Question 3.10]) Let *G* be a topological group determined by a point-countable cover consisting of bisequential spaces. If *G* is an *A*-space [21], is it metrizable?

^{*} Corresponding author. Tel.: +1 740 588 1419; fax: +1 740 453 6161.

E-mail addresses: liuc1@ohio.edu (C. Liu), linshou@public.ndptt.fj.cn (S. Lin).

¹ The author is supported in part by the NSFC (No. 10971185) and NSF of Fujian Province of China (No. 2009J01013).

^{0166-8641/\$ –} see front matter $\,\, @$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2010.04.010

In [19], a stronger version of Question 1.3 is asked.

Question 1.4. ([19, Problem 16(b)]) Let G be a topological group determining by a point-countable first-countable subsets. If G is an A-space, is G metrizable?

Question 1.5. ([10, Question 4.3]) Is a symmetrizable, Baire, semitopological topological group a topological group?

We prove that a sequential topological group with a point-countable *k*-network is metrizable or a topological sum of cosmic subspaces. So Question 1.1 is true if *G* has a point-countable *k*-network. It is known that a space having a σ -compact-finite *k*-network or determining by a point-countable metric subsets has a point-countable *k*-network, and note that *k*-space with a point-countable *k*-network is a sequential space [13], hence the answer for Question 1.2 is positive. We also prove that a paratopological group determined by a point-countable cover consisting of first-countable subsets is first-countable if it contains no closed copy of S_{ω} . It gives an affirmative answer to Question 1.4 (note: an *A*-space contains no closed copy of S_{ω} [20]) and a partial answer to Question 1.3. We present a separable, semi-metric, semitopological group with Baire property that is not a paratopological group, which give a negative answer to Question 1.5. In the last section, we discuss remainders of (para-)topological groups and slightly improve Arhangel'skii's Theorem [3].

 \mathbb{R} , \mathbb{Q} , \mathbb{N} denotes the set of all real, rational and natural numbers. *e* denotes the neutral element of a group. Reader may refer to [11,12] for notations and terminology not explicitly given here.

2. First-countable paratopological groups

All spaces in this section are Hausdorff unless stated otherwise.

Recall that a *topological group* G is a group G with a (Hausdorff) topology such that the product mappings of $G \times G$ into G is jointly continuous and the inverse mapping of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous. A *paratopological group* G is a group G with a topology such that the product mappings of $G \times G$ into G is jointly continuous. A *semitopological group* G is a group G with a topology such that the product mappings of $G \times G$ into G is separately continuous. In this section, we shall show that every first-countable paratopological group is quasi-metrizable.

A function $d : X \times X \to \mathbb{R}^+ \cup \{0\}$ is called a *quasi-metric* (*non-Archimedean quasi-metric*) [12] on the set X if for each x, y, $z \in X$, (i) d(x, y) = 0 if and only if x = y; (ii) $d(x, z) \leq d(x, y) + d(y, z)$ ($d(x, z) \leq \max\{d(x, y), d(y, z)\}$). A topological space X is said to be *quasi-metrizable* (*non-Archimedean quasi-metrizable*) [12] if there is a quasi-metric (non-Archimedean quasi-metric) on X such that { $B(x, \varepsilon): \varepsilon > 0$ } forms a local base at each $x \in X$, where $B(x, \varepsilon) = \{y \in X: d(x, y) < \varepsilon\}$. Every non-Archimedean quasi-metrizable space is quasi-metrizable. The Sorgenfrey line [11, Example 1.2.2] is a non-Archimedean quasi-metrizable space.

The following proposition was proved by Ravsky [25], we present a new proof here.

By using the same proof of [12, Theorem 10.2], we have the following.

Lemma 2.1. A Hausdorff space (X, τ) is quasi-metrizable if and only if there is a function $g : \omega \times X \to \tau$ such that (i) $\{g(n, x) : n \in \omega\}$ is a local base at x; (ii) $y \in g(n + 1, x) \Rightarrow g(n + 1, y) \subset g(n, x)$.

Proposition 2.1. Every Hausdorff first-countable paratopological group is quasi-metrizable.

Proof. Suppose (X, τ) is a first-countable paratopological group. Let $\{V_n : n \in \omega\}$ be a countable local base at the neutral element *e* such that $V_{n+1}^2 \subset V_n$. Define $g : \omega \times X \to \tau$ as follow: $g(n, x) = xV_n$ for each $n \in \omega$ and $x \in X$. It is obvious that $\{g(n, x) : n \in \omega\}$ is a local base at *x*. Suppose $y \in g(n+1, x)$, then $y \in xV_{n+1}$, $y = xv_1$ for some $v_1 \in V_{n+1}$. Take $z \in g(n+1, y)$, then $z = yv_2$ for some $v_2 \in V_{n+1}$. $z = yv_2 = xv_1v_2 \in xV_{n+1}V_{n+1} \subset xV_n = g(n, x)$. By Lemma 2.1, *X* is quasi-metrizable. \Box

Question 2.1. Is a first-countable paratopological group non-Archimedean quasi-metrizable?

Recall some generalized metrizable spaces. Let (X, τ) be a topological space. A function $g: \omega \times X \to \tau$ satisfies that $x \in g(n, x)$ for each $x \in X$, $n \in \omega$. A space X is a β -space (Hodel, [12, Definition 7.7]) if there is a function $g: \omega \times X \to \tau$ such that if $x \in g(n, x_n)$ for each $n \in \omega$, then the sequence $\{x_n\}$ has a cluster point in X. A space X is a γ -space (Hodel, [12, Definition 10.5]) if there exists a function $g: \omega \times X \to \tau$ such that (i) $\{g(n, x): n \in \omega\}$ is a local base at $x \in X$; (ii) for each $n \in \omega$ and $x \in X$, there exists an $m \in \omega$ such that $y \in g(m, x)$ implies $g(m, y) \subset g(n, x)$.

The β -spaces are quite general [12]: Among Hausdorff spaces, all $w\Delta$ -spaces, semi-stratifiable spaces, Σ -spaces are β -spaces.

Every quasi-metrizable space is a γ -space. Hodel [12, Theorem 10.7] proved that if a Hausdorff space X is a β -space and a γ -space, then X is developable.² So we have the following.

² A space X is *developable* [12] if there is a sequence { U_n } of open covers of X such that { $st(x, U_n): n \in \omega$ } forms a local base at x for every $x \in X$, where $st(x, U_n) = \bigcup \{U \in U_n: x \in U\}$.

Corollary 2.1. If *G* is a first-countable Hausdorff paratopological group and a β -space, then *G* is developable.

Remark. The condition ' β -space' is essential. Sorgenfrey line [11, Example 1.2.2] is a non-developable first-countable paratopological group. A *p*-space need not be a β -space, the authors do not know the following.

Question 2.2. Let *G* be a first-countable paratopological group, if *G* is a *p*-space, is *G* developable?

Since among submetacompact spaces, a *p*-space is equivalent to a $w\Delta$ -space, hence a submetacompact *p*-space is a β -space. We may ask the following question:

Question 2.3. Is every regular T_1 , first-countable paratopological group submetacompact?

A space X is said to be *weakly first-countable* [1] if each point in X has a countable weak-base. Nedev and Choban [22] proved that every weakly first-countable topological group is metrizable, and Nyikos [24] proved the following.

Lemma 2.2. ([6, Theorem 4.7.5]) Every weakly first-countable Hausdorff paratopological group is first-countable.

A function $d: X \times X \to \mathbb{R}^+ \cup \{0\}$ is a symmetric on the set X if, for each x, $y \in X$, (i) $d(x, y) = 0 \Leftrightarrow x = y$; (ii) d(x, y) = d(y, x). A space X is said to be symmetrizable if there is a symmetric d on X satisfying the following condition: $U \subset X$ is open if and only if for each $x \in U$, there exists $\varepsilon > 0$ with $B(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\} \subset U$.

Corollary 2.2. ([16, Theorem 2.2]) If G is a symmetrizable paratopological group, then G is developable.

Proof. Since every symmetrizable space is weakly first-countable, *G* is first-countable by Lemma 2.2. Since every first-countable symmetrizable space is a β -space [12, Theorems 9.6 and 7.8], *G* is developable by Corollary 2.1. \Box

Arhangel'skii [2] proved that a bisequential topological group is metrizable. It is natural to ask the following.

Question 2.4. Is a regular *T*₁, bisequential paratopological group first-countable?

In fact, the authors even don't know if a countable, bisequential paratopological group is first-countable.

Every symmetrizable paratopological group is developable, hence a p-space. Bouziad [8] proved that a regular T_1 , Baire semitopological group that is a p-space is a topological group. Then we have the following corollary.

Corollary 2.3 (Arhangel'skii and Reznichenko). ([5]) Every regular T_1 , Baire symmetrizable paratopological group is a metrizable topological group.

Example 2.1. There exists a separable, developable, Hausdorff paratopological group that is not metrizable.

Proof. Let $(\mathbb{R}, +)$, $(\mathbb{Q}, +)$ be real numbers, rational numbers groups with usual addition respectively. Let $(G, +) = (\mathbb{R}, +) \times (\mathbb{Q}, +)$, and define

 $(a_1, r_1) + (a_2, r_2) = (a_1 + a_2, r_1 + r_2),$ for each $(a_1, r_1), (a_2, r_2) \in (G, +).$

Then (G, +) is a Abelian group. Define a neighborhood base of $(a, r) \in G$ as follow:

$$\mathcal{B}_{(a,r)} = \{\{(a,r)\} \cup ((a-1/n, a+1/n) \times (r, r+1/n)): n \in \mathbb{N}\}.$$

G is a topological space with topology generated by $\bigcup \{ \mathcal{B}_{(a,r)} : (a,r) \in G \}$. It is easy to see that (G, +) is a Hausdorff space. Since

$$\{(a, r_1)\} \cup (a - 1/4n, a + 1/4n) \times (r_1, r_1 + 1/4n) + \{(b, r_2)\} \cup (b - 1/4n, b + 1/4n) \times (r_2, r_2 + 1/4n) \\ \subset \{(a + b, r_1 + r_2)\} \cup (a + b - 1/n, a + b + 1/n) \times (r_1 + r_2, r_1 + r_2 + 1/n),$$

the operation '+' is jointly continuous, hence (G, +) is a first-countable paratopological group. *G* is also separable since $\mathbb{Q} \times \mathbb{Q}$ is a countable dense subset of *G*. Fix $r \in \mathbb{Q}$, it is easy to see that $\{(a, r): a \in \mathbb{R}\}$ is closed discrete (uncountable) subset of *G*, then *G* is not metrizable.

Since $G = \bigcup_{r \in \mathbb{Q}} \{(a, r): a \in \mathbb{R}\}$, then G has a σ -discrete network, hence it is a σ -space, therefore it is a β -space [12, Theorem 7.8]. By Corollary 2.1, G is a developable space. \Box

Remark. Example 2.1 gives a partial answer to [25, Question 3.2]: Is every Moore paratopological group metrizable? Example 2.1 also shows that a first-countable paratopological groups need not be meta-Lindelöf.

Definition 2.1 (*Borges*). ([12, Definition 5.6]) A space is called *stratifiable* if there is a function *G* which assigns to each $n \in \omega$ and closed set $H \subset X$, an open set G(n, H) containing *H* such that

(i) $H = \bigcap_{n \in \omega} G(n, H);$ (ii) $H \subset K$ implies $G(n, H) \subset G(n, K);$ (iii) $H = \bigcap_{n \in \omega} \overline{G(n, H)}.$

Lemma 2.3. ([12, Theorem 5.8]) A regular T_1 space (X, τ) is stratifiable if and only if there exists a function $g: \omega \times X \to \tau$ such that (i) $\{x\} = \bigcap_{n \in \omega} g(n, x)$; (ii) if $y \in g(n, x_n)$, then $x_n \to y$; (iii) if $y \notin H$, where H is closed, then $y \notin \bigcup \{g(n, x): x \in H\}$ for some $n \in \omega$.

A symmetric $d: G \times G \to \mathbb{R}^+ \cup \{0\}$ of a paratopological group G is called *left-invariant* if for any $a, x, y \in G$, d(x, y) = d(ax, ay).

Theorem 2.1. Let G be a regular T_1 paratopological group with a left-invariant symmetric. Then G is metrizable.

Proof. Let $d: G \times G \to \mathbb{R}^+ \cup \{0\}$ be a left-invariant symmetric, and let *e* be the neutral element of *G*. Since *G* is weakly first-countable, by Lemma 2.2, *G* is first-countable, hence *G* is quasi-metrizable by Proposition 2.1.

Now we prove that *G* is a stratifiable space. Put

 $B(x, 1/2^n) = \{ y \in G : d(x, y) < 1/2^n \},\$

and fix a local base $\{V_n: n \in \omega\}$ at e such that $V_n \subset int(B(e, 1/2^{k_n}))$, $V_{n+1}^2 \subset V_n$ and $d(e, x) > 1/2^{k_{n+1}}$ if $x \notin V_n$, where $n < k_n < k_{n+1}$. Define

 $g(n, x) = xV_n$, for each $n \in \omega$, $x \in G$.

Obviously, (i) of Lemma 2.3 is satisfied. For each $n \in \omega$, if $y \in g(n, x_n) = x_n V_n$, then $x_n^{-1} y \in V_n$, so

$$d(x_n, y) = d(x_n^{-1}x_n, x_n^{-1}y) = d(e, x_n^{-1}y) < 1/2^{k_n},$$

hence $x_n \to y$. (ii) of Lemma 2.3 is satisfied. Let H be a closed subset of G, $y \notin H$, then $yV_n \cap H = \emptyset$ for some $n \in \omega$.

Claim. $yV_{n+2} \cap g(n+2, x) = \emptyset$ for each $x \in H$.

Suppose not, let $z \in yV_{n+2} \cap xV_{n+2}$, then $x^{-1}z \in V_{n+2}$, $d(z, x) = d(x^{-1}z, e) < 1/2^{k_{n+2}}$. $z^{-1}x \in V_{n+1}$, otherwise $d(z^{-1}x, e) > 1/2^{k_{n+2}}$. Since $z^{-1}x \in V_{n+1}$, $x \in zV_{n+1} \subset yV_{n+2} \subset yV_n$, this is a contradiction with $yV_n \cap H = \emptyset$.

 $yV_{n+2} \cap (\bigcup \{g(n+2, x): x \in H\}) = \emptyset$, then $y \notin \bigcup \{g(n+2, x): x \in H\}$. By Lemma 2.3, *G* is stratifiable, hence *G* is metrizable by [12, Corollary 10.8(ii)]. \Box

3. Topological groups with a point-countable covers

All spaces in this section are regular T_1 unless stated otherwise.

A cover \mathcal{P} of a topological space X is *point-countable* (*point-finite*) if every point of X belongs to at most countably many (finitely many) elements of \mathcal{P} . For a cover \mathcal{P} of a space X we say that X is *determined by* \mathcal{P} [13] provided that a set $F \subset X$ is closed in X if and only if its intersection $F \cap P$ with every $P \in \mathcal{P}$ is closed in P.

Let \mathcal{P} be a family of subsets of a space X. Then \mathcal{P} is a *cs-network at a point* $x \in X$ if whenever $\{x_n\}$ is a sequence converging to x and U is a neighborhood of x, there are $k \in \omega$ and $P \in \mathcal{P}$ such that $\{x\} \cup \{x_n: n \ge k\} \subset P \subset U$. Similarly, \mathcal{P} is a *cs*-network at a point* $x \in X$ if whenever $\{x_n\}$ is a sequence converging to x and U is a neighborhood of x, there are an infinite $A \subset \omega$ and $P \in \mathcal{P}$ such that $\{x\} \cup \{x_n: n \in A\} \subset P \subset U$.

Lemma 3.1. Let X be a space determined by a point-countable cover \mathcal{P} consisting of first-countable subsets. Then X is a sequential spaces with a countable cs-network at each point in X.

Proof. Let *Z* be the disjoint topological sum $\bigoplus \mathcal{P}$ of \mathcal{P} , and $f : Z \to X$ be the obvious map. Then *f* is a quotient map by [13, Lemma 1.8]. Since *Z* is first-countable, *X* is a sequential space. Fix a point $x \in X$, and let

$$\mathcal{P}_{x} = \{P \in \mathcal{P} \colon x \in P\} = \{P_{n} \colon n \in \omega\}.$$

Each P_n is first-countable, let $\{V(n, i): i \in \omega\}$ be countable local base at x in P_n , then $\{V(n, i): n, i \in \omega\}$ is a countable cs^* -network at x. In fact, let $\{x_k\}$ be a sequence converging to $x \in U$ with U open in X, then there is a sequence L converging

to some point z in Z such that f(L) is a sequence of $\{x_k\}$ by [27, Lemma 1.6]. Since $z \in f^{-1}(x) \subset f^{-1}(U)$, then $z = x \in P_n$ in Z for some $n \in \omega$, and $V(n,m) \subset f^{-1}(U) \cap P_n$ in Z for some $m \in \omega$. We can assume that $L \subset V(n,m)$ in Z, then $\{x\} \cup f(L) \subset V(n,m) \subset U$ in X. Hence $\{V(n,i): n, i \in \omega\}$ is a countable cs^* -network at x. By [26, Lemma 2.2], X has a countable cs-network at every $x \in X$. \Box

The S_{κ} is the quotient space obtained from the disjoint sum of κ many convergent sequences vis identifying limit points of all these sequences. S_{ω} is called *sequential fan*.

A topological space X is called an α_4 -space (α_7 -space), if for any sequence $S_n \subset X$ ($n \in \omega$), converging to a point $x \in X$ there is a sequence $S \subset X$ converging to x (some point $y \in X$) and such that $S_n \cap S \neq \emptyset$ for infinitely many sequences S_n .

Lemma 3.2. If a sequential space X has no closed copy of S_{ω} , then X is an α_7 -space.

Proof. Let $\{S_n: n \in \omega\}$ be a collection of convergent sequences in X with $S_n \to x \in X$ for each $n \in \omega$. Put $Z = \{x\} \cup (\bigcup \{S_n: n \in \omega\})$.

If *Z* is not closed in *X*, there is a sequence $S \subset Z$ such that *S* converges to some point $y \in X \setminus Z$ because *X* is a sequential space. Then $S_n \cap S \neq \emptyset$ for infinitely many sequences S_n . If *Z* is closed in *X*, then it is not a copy of S_{ω} . There exists $x_k \in S_{n_k}$ ($k \in \omega$) such that { $x_k : k \in \omega$ } is not closed in *Z*. Thus there is a convergent sequence $S \subset {x_k : k \in \omega}$. Hence *X* is an α_7 -space. \Box

Theorem 3.1. Let G be a paratopological group determined by a point-countable cover consisting of first-countable subsets. Then G is first-countable if it contains no closed copy of S_{ω} .

Proof. By Lemmas 3.1 and 3.2, *G* is an α_7 -space. Then *G* has countable *sb*-character³ by the same proof of [7, Lemma 3]. It is easy to check that a sequential space having countable *sb*-character is weakly first-countable, then *G* is first-countable by Lemma 2.2. \Box

Corollary 3.1. Let *G* be a topological group determined by a point-countable cover consisting of first-countable subsets. Then *G* is metrizable if it contains no closed copy of S_{ω} .

Remark. Corollary 3.1 gives a partial answer to Nogura-Shakhmatov-Tanaka's question [23, Questions 3.9 and 3.10].

Corollary 3.2. A paratopological group G determined by a point-finite cover consisting of first-countable subspaces is first-countable.

Proof. By [23, Lemma 2.7], *G* is an α_4 -space. Then *G* contains no closed copy of S_{ω} , hence *G* is first-countable by Theorem 3.1. \Box

The following lemma is a easy modification of Lemma 4 in [7].

Lemma 3.3. Let (G, *) be a sequential topological group. Then G contains no closed copy of S_{ω} or every first-countable closed subset of G is locally countably compact.

Proof. Suppose not, (G, *) contains a closed copy of $S_{\omega} = \{e\} \cup \{x_{n,m}: n, m \in \omega\}$, where $x_{n,m} \to e$ as $m \to \infty$ for each $n \in \omega$. (G, *) also contains a closed first-countable subset H that is not locally countably compact. Without loss of generality, we assume $e \in H$ and e has a countable decreasing local base $\{V_n: n \in \omega\}$ at e in H, each V_n is not locally countably compact. For each $n \in \omega$, let $\{y_{n,m}: m \in \omega\} \subset V_n$ be a closed discrete subset of H. Fix n, it is easy to see that $D_n = \{x_{n,m} * y_{n,m}: m \in \omega\}$ is closed and discrete in (G, *). Hence there exists $k_n \in \omega$ such that $e \neq x_{n,m} * y_{n,m}$ for all $m > k_n$. So we may assume that $e \notin \{x_{n,m} * y_{n,m}: m \in \omega\}$. Let $A = \{x_{n,m} * y_{n,m}: n, m \in \omega\}$, then $e \in A \setminus \{e\}$. A is not closed, since (G, *) is sequential, there is a sequence $S \subset A$ convergent to a point $a \notin A$. D_n is closed and discrete, then $S \cap D_n$ is finite. Consequently, there is a subsequence $\{x_{n,m}*y_{n,m}: i \in \omega\} \subset S$ with $n_{i+1} > n_i$. Since $y_{n_i,m_i}^{-1} \to e, x_{n_i,m_i} * y_{n_i,m_i} * y_{n_i,m_i} \to a * e = a$, i.e. $x_{n_i,m_i} \to a$. This is a contradiction since $\{x_{n_i,m_i}: i \in \omega\}$ is discrete. \Box

Recall the concept of *k*-networks. A collection \mathcal{P} of subsets of a space *X* is a *k*-network [12] if whenever *K* is a compact subset of an open set *U* in *X*, there exists a finite $\mathcal{P}' \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{P}' \subset U$.

³ A space X is called to have countable *sb-character* if for every $x \in X$, there is a countable network \mathcal{P} at x consisting of the sequential neighborhoods of x, that is, every sequence converging to x is eventually in each element of \mathcal{P} .

Remark. If a space X is determined by a point-countable cover \mathcal{P} consisting of metric subsets. Then the space Z in the proof of Lemma 3.1 is metrizable and the obvious map $f : Z \to X$ is a quotient *s*-map, hence X has a point-countable *k*-network by [13, Theorem 6.1].

Lemma 3.4. Let *X* a *k*-space with a point-countable *k*-network, in which every closed first-countable subset is locally countably compact. Then *X* has a point-countable *k*-network consisting of cosmic subsets.

Proof. Since every closed first-countable subset in *X* is locally countably compact, *X* has a point-countable *k*-network \mathcal{P} such that \overline{P} is countably compact in *X* for each $P \in \mathcal{P}$ by [15, Theorem 2.3]. For each $P \in \mathcal{P}$, \overline{P} is compact metrizable by [13, Theorem 4.1], then *P* is a cosmic subspace⁴ in *X*.

Lemma 3.5. ([18, Corollary 2.7]) Let *G* be a sequential topological groups with a point-countable *k*-network consisting of cosmic subsets. Then *G* has an open subgroup which is cosmic.

Theorem 3.6. Let G be a sequential topological group with a point-countable k-network. Then G is a metrizable space or a topological sum of cosmic spaces.

Proof. By Lemma 3.3, we consider following two cases:

Case 1. *G* contains no closed copy of S_{ω} .

Since a *k*-space that has a point-countable *k*-network and contains no closed copy of S_{ω} is weakly first-countable [14, Theorem 3.13 and Corollary 3.9], hence *G* is metrizable by Lemma 2.2.

Case 2. Every closed first-countable subset is locally countably compact.

By Lemmas 3.4 and 3.5, G is a topological sum of cosmic subspaces. \Box

Corollary 3.3. A sequential topological group with a point-countable k-network is paracompact.

4. Symmetrizable semitopological groups

In [10], Cao, Drozowski and Piotrowski asked if every symmetrizable semitopological group is a Moore space. They further asked "Must every symmetrizable Hausdorff Baire semitopological group be a topological group?" The answer is "No". In fact, a symmetrizable semitopological group need not be first-countable.

Example 4.1. There is a separable, symmetrizable, Hausdorff semitopological group that is not first-countable.

Proof. Let $G = \mathbb{R}^2$ with usual addition "+", then (G, +) is a group. Define $d : G \times G \to \mathbb{R}^+ \cup \{0\}$ as follow:

$$d((x, y), (x', y')) = \begin{cases} |x - x'|, & x \neq x', \ y = y'; \\ |y - y'|, & x = x', \ y \neq y'; \\ 0, & x = x', \ y = y'; \\ 1, & \text{otherwise.} \end{cases}$$

It is easy to check that *G* is Hausdorff and *d* is a symmetric on (G, +). Endow (G, +) with the topology generated by *d*, then (G, +) is a semitopological group. $\mathbb{Q} \times \mathbb{Q} \subset (G, +)$ is a countable dense subset of *G*. In fact, let *V* be an open subset of *G*. Pick $x = (x', x'') \in V$, there exists $n \in \mathbb{N}$ such that $\{y \in G: d(x, y) < 1/n\} \subset V$, we find $r' \in \mathbb{Q}$ with |r' - x'| < 1/n, then $z = (r', x'') \in V$. There exists $k \in \mathbb{N}$ such that $\{y \in G: d(z, y) < 1/k\} \subset V$, find $r'' \in \mathbb{Q}$ with |r'' - x''| < 1/k, then $(r', r'') \in V$, therefore *G* is separable. But *G* is not first-countable since no sequence in $\mathbb{Q} \times \mathbb{Q}$ converges to (p', p''), where p', p'' are irrational numbers. \Box

A space X is said to be *semi-metric* [12] if there is a symmetric d on X such that for each $x \in X$, $\{B(x, \varepsilon): \varepsilon > 0\}$ forms a neighborhood base at x.

Example 4.2. There is a separable, Baire, semi-metric, semitopological group that is not a paratopological group.

⁴ A space is called a *cosmic space* if it has a countable network.

Proof. Let $G = (\mathbb{R}^2, +)$ with the 'bowtie' topology [12]; that is, a neighborhood $U((s, t), \varepsilon, \delta)$ of a point $(s, t) \in G$ is the 'bowtie':

$$\left\{(s,t)\right\}\cup\left\{\left(s',t'\right):0<\left|s-s'\right|<\varepsilon,\ \left|\left(t'-t\right)/\left(s'-s\right)\right|<\delta\right\},$$

where $\varepsilon > 0$ and $\delta > 0$ can vary.

Define

$$d((s,t), (s',t')) = \begin{cases} 0, & s = s', \ t = t'; \\ 1, & s = s', \ t \neq t'; \\ |s - s'| + |(t - t')/(s - s')|, & \text{otherwise.} \end{cases}$$

It is easy to check that G is regular T_1 , d is semi-metric and G is a separable, semitopological group.

We prove that *G* is a Baire space. Let \mathbb{R}^2 be the real plane with usual topology.

Let $\{V_n: n \in \mathbb{N}\}$ be a sequence of open dense subsets of *G*. Fix $n \in \mathbb{N}$, for $(s, t) \in V_n$, $U((s, t), 1/m, 1/m) \subset V_n$ for some $m \in \mathbb{N}$, let

$$W_n(s,t) = U((s,t), 1/m, 1/m) \setminus \{(s,t)\}, \qquad W_n = \bigcup \{W_n(s,t): (s,t) \in V_n\}.$$

Since $W_n(s,t)$ is open in \mathbb{R}^2 and V_n is dense in G, W_n is an open dense subset in \mathbb{R}^2 . It is well known that \mathbb{R}^2 has Baire property, then $\bigcap_{n \in \mathbb{N}} W_n(\subset \bigcap_{n \in \mathbb{N}} V_n)$ is dense in \mathbb{R}^2 . Since every open subset in G contains an open subset in \mathbb{R}^2 , $\bigcap_{n \in \mathbb{N}} W_n$ is dense in G, hence $\bigcap_{n \in \mathbb{N}} V_n$ is dense in G.

G is not a paratopological group.

Suppose not, then *G* is a Moore space by Corollary 2.2, hence a *p*-space. By Bouziad's result [8], *G* is a topological group, hence a separable metric space. But it is easy to see $\{(0, t): t \in \mathbb{R}\}$ is discrete, this is a contradiction. \Box

5. Remainders of (para-)topological groups

All spaces in this section are regular T_1 unless stated otherwise.

In this section, we discuss the remainders of topological groups and paratopological groups in Hausdorff compactifications.

By a *remainder* of a Tychonoff space X we understand the subspace $bX \setminus X$ of a Hausdorff compactification bX of X.

A space *X* is said to have a *regular* G_{δ} -*diagonal* if the diagonal $\Delta = \{(x, x): x \in X\}$ can be represented as the intersection of the closures of a countable family of open neighborhoods of Δ in $X \times X$. According to Zenor [28], a space *X* has a regular G_{δ} -diagonal if and only if there exists a sequence $\{\mathcal{G}_n: n \in \omega\}$ of open covers of *X* with the following property:

(*) For any two distinct point y and z in X, there are open neighborhoods O_y and O_z of y and z, respectively, and $k \in \omega$ such that no element of \mathcal{G}_k intersects both O_x and O_y .

Arhangel'skii [3] proved that if a remainder of a non-locally compact topological group in a Hausdorff compactification has a G_{δ} -diagonal, then *G* is separable and metrizable. This is not true when *G* is a paratopological group. In fact, Alexandorff's double-arrow space is a Hausdorff compactification of Sorgenfrey line, its remainder is still a copy of Sorgenfrey line, so the remainder has a regular G_{δ} -diagonal [16], but Sorgenfrey line is not metrizable. We may ask the following question:

Question 5.1. Let *G* be a non-locally compact paratopological group. Suppose the remainder $Y = bG \setminus G$ has a regular G_{δ} -diagonal, does *G* have a regular G_{δ} -diagonal?

The following theorem gives a partial answer to the above question.

Theorem 5.1. Let *G* be a non-locally compact Abelian paratopological group in which every compact subset is first-countable. Suppose the remainder $Y = bG \setminus G$ has a regular G_{δ} -diagonal, then *G* has a regular G_{δ} -diagonal.

Proof. We consider following two cases:

Case 1. Y is pseudocompact.

Since Y has a regular G_{δ} -diagonal, the Y is metrizable, hence Y is compact. It means that G is locally compact. This is a contradiction.

Case 2. Y is not pseudocompact.

By [4, Lemma 2.1], there exists a non-empty compact subspaces *F* of *G* which has a countable strong π -base⁵ { V_n : $n \in \mathbb{N}$ } in *G*, we may assume $V_{n+1} \subset V_n$ (in fact, we may consider { $\bigcup_{n \ge k} V_n$: $k \in \mathbb{N}$ }).

Claim. There exists $x \in F$ such that any neighborhood of x in G meets every V_n .

Suppose not, for each $x \in F$, there is an neighborhood V(x) of x in G and $n(x) \in \mathbb{N}$ such that $V(x) \cap V_n = \emptyset$ for n > n(x). $F \subset \bigcup \{V(x_i): i \leq k\}$ for some k. Let $n_0 = \max\{n(x_i): i \leq k\}, V_n \cap (\bigcup \{V(x_i): i \leq k\}) = \emptyset$ for each $n > n_0$, this is a contradiction. Fix $x \in F$ such that any neighborhood of x meets every V_n . F is first-countable, let $\{W_n: n \in \mathbb{N}\}$ be a decreasing base

at x in F. $W_n = F \cap U_n$, where U_n is open in G, we may assume $U_{n+1} \subset U_n$. Let $R_n = V_n \cap U_n$ for $n \in \mathbb{N}$, $\{R_n: n \in \mathbb{N}\}$ is a decreasing strong π -base converging to x. Without loss of generality, we assume x = e.

Let $\mathcal{G}_n = \{xR_n : x \in G\}$ for each n, then $\{\mathcal{G}_n : n \in \mathbb{N}\}$ is a sequence of open coverings of G. By Zenor's characterization [28] of regular G_{δ} -diagonal, we only prove the following: For $y, z \in G$, $y \neq z$, there is $k \in \mathbb{N}$ such that no element of \mathcal{G}_k intersects both $y'R_k$ and $z'R_k$, where $y \in y'R_k$, $z \in z'R_k$.

Suppose not; for any $n \in \mathbb{N}$, there is an element $x_n R_n \in \mathcal{G}_n$ and $y_n, z_n \in G$ such that $y \in y_n R_n, z \in z_n R_n$, $y_n R_n \cap x_n R_n \neq \emptyset$ and $z_n R_n \cap x_n R_n \neq \emptyset$. Then there exist $a_n, b_n, c_n, d_n, u_n, v_n \in R_n$ such that

 $y = y_n u_n$, $z = z_n v_n$ and $y_n a_n = x_n b_n$, $x_n c_n = z_n d_n$.

Then $x_n = b_n^{-1}a_ny_n = b_n^{-1}a_nu_n^{-1}y$. On the other hand, $x_n = c_n^{-1}z_nd_n = c_n^{-1}d_nv_n^{-1}z$. Then $b_n^{-1}a_nu_n^{-1}y = c_n^{-1}d_nv_n^{-1}z$, hence $yz^{-1} = a_n^{-1}c_n^{-1}v_n^{-1}b_nu_nd_n$. Since $a_nc_nv_n \to e$ $(n \to \infty)$, then $a_nc_nv_na_n^{-1}c_n^{-1}v_n^{-1}b_nu_nd_n \to yz^{-1}$, $b_nu_nd_n \to yz^{-1}$, but $b_nu_nd_n \to e$, that means $yz^{-1} = e$, therefore y = z. this is a contradiction.

G has a regular G_{δ} -diagonal. \Box

Lemma 5.1. ([9]) Suppose X is of countable tightness and $A \subset X$. If \mathcal{P} is any point-countable collection of X, then there are at most countably many minimal finite subcollections $\mathcal{F} \subset \mathcal{P}$ such that $A \subset (\bigcup \mathcal{F})^{\circ}$.

Let *X* be a space and $x \in X$. A collection of nonempty open sets \mathcal{U} of *X* is called a π -base at *x* if for every open set *O* with $x \in O$, there exists an $U \in \mathcal{U}$ such that $U \subset O$. The idea of the following lemma bases on the proof of [13, Proposition 3.2].

Lemma 5.2. Let X be a pseudo-open s-image of a space with a point-countable base. Then X has a countable π -base at each point.

Proof. Since X is a pseudo-open s-image of a space with a point-countable base, by [13, Propositions 6.2 and 6.3(a)], X is a pseudo-open s-image of a metric space. Tanaka [27] characterized a pseudo-open s-images of a metric spaces as a Fréchet space with a point-countable cs^* -network. Let \mathcal{P} be a point-countable cs^* -network of X.

Fix $x \in X$, if x is an isolated point, the X has a countable π -base at x. If x is not an isolated point, there is a non-trivial sequence $C_0 = \{x_n : n \in \mathbb{N}\}$ converging to x. We may assume that each x_n is not an isolated point. Otherwise $\{\{x_n\}: x_n \text{ is an isolated point}\}$ is a countable π -base at x.

Put

$$\mathcal{F} = \{F: F \subset C_0, |F| < \omega\}, \qquad \mathcal{E} = \{C_0 \setminus F: F \in \mathcal{F}\},\$$
$$\mathcal{G}_E = \left\{ \left(\bigcup \mathcal{P}'\right)^\circ: E \subset \left(\bigcup \mathcal{P}'\right)^\circ, \ \mathcal{P}' \text{ is a minimal finite subcollection of } \mathcal{P} \right\}.$$

By Lemma 5.1, \mathcal{G}_E is countable.

Let $\mathcal{G} = \{\mathcal{G}_E \colon E \in \mathcal{E}\}.$

Claim. \mathcal{G} is a π -base at x.

Suppose not, there is an open neighborhood *V* of *x* such that *V* contains no element of \mathcal{G} . Without loss of generality, we assume $\{x_n : n \in \mathbb{N}\} \subset V$. Let $\mathcal{Q} = \{P \in \mathcal{P} : P \subset V\}$. Then there is no finite subcollection $\mathcal{P}'' \subset \mathcal{Q}$ such that $(\bigcup \mathcal{P}'')^\circ$ contains any element of \mathcal{E} .

Let $\mathcal{Q}(A) = \{P \in \mathcal{Q}: P \cap A \neq \emptyset\}$ for $A \subset X$. Since \mathcal{Q} is point-countable, we write $\mathcal{Q}(C_0) = \{P_{n,0}: n \in \mathbb{N}\}$.

 $P_{1,0}^{\circ}$ does not contain any element of \mathcal{E} , there exists $x_{n_1} \notin P_{1,0}^{\circ}$. Since *X* is Fréchet, there is a sequence $C_1 \subset V \setminus (P_{1,0} \cup \{x\})$ converging to x_{n_1} . We write $\mathcal{Q}(C_1) = \{P_{n,1}: n \in \mathbb{N}\}$. $(\bigcup \{P_{i,j}: i \leq 2, j < 2\})^{\circ}$ does not contain any element of \mathcal{E} , there exists $x_{n_2} \notin (\bigcup \{P_{i,j}: i \leq 2, j < 2\})^{\circ}$ with $n_2 > n_1$. Then there is a sequence $C_2 \subset V \setminus ((\bigcup \{P_{i,j}: i \leq 2, j < 2\}) \cup \{x\})$. By induction, we can choose countable sequences C_i , x_{n_i} $(i \in \mathbb{N})$ such that $n_i < n_j$ if i < j, $x \notin C_i$ and $C_n \cap P_{i,j} = \emptyset$ for $i \leq n$, j < n. The

⁵ A strong π -base of a space X at a subset F of X is an infinite family γ of non-empty open subsets of X such that every open neighborhood of F contains all but finitely many elements of γ .

last condition implies that no $P \in Q$ meets infinitely many C_i . Put $C = \bigcup \{C_i : i \in \omega\}$, $x \in \overline{C}$, then there is a sequence $K \subset V$ converging to x. Since \mathcal{P} is a cs^* -network, there is a $P \in \mathcal{P}$ such that $x \in P \subset V$ and P contains infinitely many elements of K, hence $P \in Q$ and P meets infinitely many C_i , this is a contradiction. \Box

It was proven that [17, Theorem 4] a non-locally compact topological group *G* and its Hausdorff compactification *bG* are separable and metrizable if its remainder is a quotient *s*-image of a space with a point-countable base and has countable π -base at each point. By applying Lemma 5.2, we have the following.

Theorem 5.2. Let *G* be a non-locally compact topological group, if the remainder $Y = bG \setminus G$ of a Hausdorff compactification of *G* is a pseudo-open s-image of a space with a point-countable base, then *G* and *bG* are separable and metrizable.

Question 5.2. Let *G* be a non-locally compact topological group, if the remainder $Y = bG \setminus G$ of a Hausdorff compactification of *G* has a point-countable weak base, are *G* and *bG* separable and metrizable?

References

- [1] A.V. Arhangel'skii, Mappings and spaces, Uspekhi Mat. Nauk 21 (4) (1966) 133-184 (in Russian).
- [2] A.V. Arhangel'skii, On biradial topological spaces and groups, Topology Appl. 36 (1990) 173-180.
- [3] A. Arhangel'skii, More on remainders close to metrizable spaces, Topology Appl. 154 (2007) 1084-1088.
- [4] A. Arhangel'skii, Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008) 119-126.
- [5] A.V. Arhangel'skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005) 107-119.
- [6] A.V. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, 2009.
- [7] T. Banakh, L. Zdomskyi, The topological structure of (homogeneous) spaces and groups with countable *cs**-character, Appl. Gen. Topology 5 (1) (2004) 25–48.
- [8] A. Bouziad, Continuity of separately continuous group action in p-spaces, Topology Appl. 111 (1996) 119-124.
- [9] D.K. Burke, E.A. Michael, On certain point-countable covers, Pacific J. Math. 64 (1976) 79-92.
- [10] J. Cao, R. Drozowski, Z. Piotrowski, Weak continuity properties of topologized groups, Czechoslovak Math. J. 60 (135) (2010) 133-148.
- [11] R. Engelking, General Topology, revised and completed edition, Heldermann-Verlag, Berlin, 1989.
- [12] G. Gruenhage, Generalized metric spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423-501.
- [13] G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (2) (1984) 303-332.
- [14] S. Lin, A note on the Arens' space and sequential fan, Topology Appl. 81 (1997) 185-196.
- [15] S. Lin, A note on closed images of locally compact metric spaces, Acta Math. Hungar. 109 (1-2) (2005) 157-162.
- [16] C. Liu, A note on paratopological groups, Comment. Math. Univ. Carolin. 47 (4) (2006) 633-640.
- [17] C. Liu, Remainders in compactifications of topological groups, Topology Appl. 156 (2009) 849-854.
- [18] C. Liu, M. Sakai, Y. Tanaka, Topological groups with a certain point-countable cover, Topology Appl. 119 (2002) 209-217.
- [19] C. Liu, Y. Tanaka, Spaces and networks: Special networks, in: E. Pearl (Ed.), Open Problems in Topology II, Elsevier Science Publishers B.V., 2007, pp. 23-34.
- [20] M. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972) 91–138.
- [21] E. Michael, R.C. Olson, F. Siwiec, A-spaces and countably bi-quotient maps, Dissertationes Math. 133 (1976) 5-43.
- [22] S.J. Nedev, M.M. Choban, On the theory of o-metrizable spaces I, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 27 (1) (1972) 8-15.
- [23] T. Nogura, D. Shakhmatov, Y. Tanaka, Metrizability of topological groups having weak topologies with respect to good covers, Topology Appl. 54 (1993) 203–212.
- [24] P. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (4) (1981) 793-801.
- [25] O.V. Ravsky, Paratopological groups I, Matematychni Studii 16 (2001) 37-48.
- [26] M. Sakai, Function spaces with a countable cs*-network at a point, Topology Appl. 156 (2008) 117-123.
- [27] Y. Tanaka, Point-countable covers and *k*-networks, Topology Proc. 12 (1987) 327–349.
- [28] P. Zenor, On spaces with regular G_{δ} -diagonals, Pacific J. Math. 40 (1972) 759–763.