Generalized metric spaces with algebraic structures

Chuan Liu ${ }^{\text {a,*, }}$, Shou Lin ${ }^{\text {b,c, }} 1$
${ }^{\text {a }}$ Department of Mathematics, Ohio University Zanesville Campus, Zanesville, OH 43701, USA
${ }^{\mathrm{b}}$ Institute of Mathematics, Ningde Teachers' College, Ningde, Fujian 352100, PR China
c Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, PR China

A R T I C L E I N F O

Article history:

Received 1 September 2009
Received in revised form 13 April 2010

MSC:

54E35
54 E 20
54H11
22A05

Keywords:

Paratopological groups
Topological groups
Developable spaces
Point-countable covers
k-networks
π-bases

Abstract

We discuss generalized metrizable properties on paratopological groups and topological groups. It is proved in this paper that a first-countable paratopological group which is a β-space is developable; and we construct a Hausdorff, separable, non-metrizable paratopological group which is developable. We consider paratopological (topological) groups determined by a point-countable first-countable subspaces and give partial answers to Arhangel'skii's conjecture; Nogura-Shakhmatov-Tanaka's question (Nogura et al., 1993 [23]). We also give a negative answer to a question in Cao et al. (in press) [10]. Finally, remainders of topological groups and paratopological groups are discussed and Arhangel'skii's Theorem (Arhangel'skii, 2007 [3]) is improved.

(c) 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to discussing the generalized metrizable properties on topological algebra. As is known to all, every first-countable topological group is metrizable. However, this does not hold for paratopological group. The Sorgenfrey line [11, Example 1.2.2] with the usual addition is a first-countable paratopological group but not metrizable. More even, we can see in Example 2.1 that a developable paratopological group is unnecessary to be metrizable. We prove that every paratopological group with a left-invariant symmetric is metrizable. Also we discuss the following questions:

Question 1.1 (Arhangel'skii conjecture). $S_{\omega_{1}}$ cannot be embedded into a sequential topological group.

Question 1.2. ([19, Problem 15]) Let G be a topological group which is a k-space with a σ-compact-finite k-network, or a space with a point-countable determining cover by metric spaces. Is G paracompact (or meta-Lindelöf)?

Question 1.3. ([23, Question 3.10]) Let G be a topological group determined by a point-countable cover consisting of bisequential spaces. If G is an A-space [21], is it metrizable?

[^0]In [19], a stronger version of Question 1.3 is asked.
Question 1.4. ([19, Problem 16(b)]) Let G be a topological group determining by a point-countable first-countable subsets. If G is an A-space, is G metrizable?

Question 1.5. ([10, Question 4.3]) Is a symmetrizable, Baire, semitopological topological group a topological group?
We prove that a sequential topological group with a point-countable k-network is metrizable or a topological sum of cosmic subspaces. So Question 1.1 is true if G has a point-countable k-network. It is known that a space having a σ -compact-finite k-network or determining by a point-countable metric subsets has a point-countable k-network, and note that k-space with a point-countable k-network is a sequential space [13], hence the answer for Question 1.2 is positive. We also prove that a paratopological group determined by a point-countable cover consisting of first-countable subsets is first-countable if it contains no closed copy of S_{ω}. It gives an affirmative answer to Question 1.4 (note: an A-space contains no closed copy of S_{ω} [20]) and a partial answer to Question 1.3. We present a separable, semi-metric, semitopological group with Baire property that is not a paratopological group, which give a negative answer to Question 1.5. In the last section, we discuss remainders of (para-)topological groups and slightly improve Arhangel'skii's Theorem [3].
$\mathbb{R}, \mathbb{Q}, \mathbb{N}$ denotes the set of all real, rational and natural numbers. e denotes the neutral element of a group. Reader may refer to $[11,12]$ for notations and terminology not explicitly given here.

2. First-countable paratopological groups

All spaces in this section are Hausdorff unless stated otherwise.
Recall that a topological group G is a group G with a (Hausdorff) topology such that the product mappings of $G \times G$ into G is jointly continuous and the inverse mapping of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous. A paratopological group G is a group G with a topology such that the product mappings of $G \times G$ into G is jointly continuous. A semitopological group G is a group G with a topology such that the product mappings of $G \times G$ into G is separately continuous. In this section, we shall show that every first-countable paratopological group is quasi-metrizable.

A function $d: X \times X \rightarrow \mathbb{R}^{+} \cup\{0\}$ is called a quasi-metric (non-Archimedean quasi-metric) [12] on the set X if for each $x, y, z \in X$, (i) $d(x, y)=0$ if and only if $x=y$; (ii) $d(x, z) \leqslant d(x, y)+d(y, z)(d(x, z) \leqslant \max \{d(x, y), d(y, z)\})$. A topological space X is said to be quasi-metrizable (non-Archimedean quasi-metrizable) [12] if there is a quasi-metric (non-Archimedean quasi-metric) on X such that $\{B(x, \varepsilon): \varepsilon>0\}$ forms a local base at each $x \in X$, where $B(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\}$. Every non-Archimedean quasi-metrizable space is quasi-metrizable. The Sorgenfrey line [11, Example 1.2.2] is a non-Archimedean quasi-metrizable space.

The following proposition was proved by Ravsky [25], we present a new proof here.
By using the same proof of [12, Theorem 10.2], we have the following.
Lemma 2.1. A Hausdorff space (X, τ) is quasi-metrizable if and only if there is a function $g: \omega \times X \rightarrow \tau$ such that (i) $\{g(n, x): n \in \omega\}$ is a local base at x; (ii) $y \in g(n+1, x) \Rightarrow g(n+1, y) \subset g(n, x)$.

Proposition 2.1. Every Hausdorff first-countable paratopological group is quasi-metrizable.
Proof. Suppose (X, τ) is a first-countable paratopological group. Let $\left\{V_{n}: n \in \omega\right\}$ be a countable local base at the neutral element e such that $V_{n+1}^{2} \subset V_{n}$. Define $g: \omega \times X \rightarrow \tau$ as follow: $g(n, x)=x V_{n}$ for each $n \in \omega$ and $x \in X$. It is obvious that $\{g(n, x): n \in \omega\}$ is a local base at x. Suppose $y \in g(n+1, x)$, then $y \in x V_{n+1}, y=x v_{1}$ for some $v_{1} \in V_{n+1}$. Take $z \in g(n+1, y)$, then $z=y v_{2}$ for some $v_{2} \in V_{n+1} . z=y v_{2}=x v_{1} v_{2} \in x V_{n+1} V_{n+1} \subset x V_{n}=g(n, x)$. By Lemma 2.1, X is quasi-metrizable.

Question 2.1. Is a first-countable paratopological group non-Archimedean quasi-metrizable?
Recall some generalized metrizable spaces. Let (X, τ) be a topological space. A function $g: \omega \times X \rightarrow \tau$ satisfies that $x \in g(n, x)$ for each $x \in X, n \in \omega$. A space X is a β-space (Hodel, [12, Definition 7.7]) if there is a function $g: \omega \times X \rightarrow \tau$ such that if $x \in g\left(n, x_{n}\right)$ for each $n \in \omega$, then the sequence $\left\{x_{n}\right\}$ has a cluster point in X. A space X is a γ-space (Hodel, [12, Definition 10.5]) if there exists a function $g: \omega \times X \rightarrow \tau$ such that (i) $\{g(n, x): n \in \omega\}$ is a local base at $x \in X$; (ii) for each $n \in \omega$ and $x \in X$, there exists an $m \in \omega$ such that $y \in g(m, x)$ implies $g(m, y) \subset g(n, x)$.

The β-spaces are quite general [12]: Among Hausdorff spaces, all $w \Delta$-spaces, semi-stratifiable spaces, Σ-spaces are β-spaces.

Every quasi-metrizable space is a γ-space. Hodel [12, Theorem 10.7] proved that if a Hausdorff space X is a β-space and a γ-space, then X is developable. ${ }^{2}$ So we have the following.

[^1]Corollary 2.1. If G is a first-countable Hausdorff paratopological group and a β-space, then G is developable.
Remark. The condition ' β-space' is essential. Sorgenfrey line [11, Example 1.2.2] is a non-developable first-countable paratopological group. A p-space need not be a β-space, the authors do not know the following.

Question 2.2. Let G be a first-countable paratopological group, if G is a p-space, is G developable?

Since among submetacompact spaces, a p-space is equivalent to a $w \Delta$-space, hence a submetacompact p-space is a β-space. We may ask the following question:

Question 2.3. Is every regular T_{1}, first-countable paratopological group submetacompact?
A space X is said to be weakly first-countable [1] if each point in X has a countable weak-base. Nedev and Choban [22] proved that every weakly first-countable topological group is metrizable, and Nyikos [24] proved the following.

Lemma 2.2. ([6, Theorem 4.7.5]) Every weakly first-countable Hausdorff paratopological group is first-countable.
A function $d: X \times X \rightarrow \mathbb{R}^{+} \cup\{0\}$ is a symmetric on the set X if, for each $x, y \in X$, (i) $d(x, y)=0 \Leftrightarrow x=y$; (ii) $d(x, y)=$ $d(y, x)$. A space X is said to be symmetrizable if there is a symmetric d on X satisfying the following condition: $U \subset X$ is open if and only if for each $x \in U$, there exists $\varepsilon>0$ with $B(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\} \subset U$.

Corollary 2.2. ([16, Theorem 2.2]) If G is a symmetrizable paratopological group, then G is developable.
Proof. Since every symmetrizable space is weakly first-countable, G is first-countable by Lemma 2.2. Since every firstcountable symmetrizable space is a β-space [12, Theorems 9.6 and 7.8], G is developable by Corollary 2.1.

Arhangel'skii [2] proved that a bisequential topological group is metrizable. It is natural to ask the following.
Question 2.4. Is a regular T_{1}, bisequential paratopological group first-countable?
In fact, the authors even don't know if a countable, bisequential paratopological group is first-countable.
Every symmetrizable paratopological group is developable, hence a p-space. Bouziad [8] proved that a regular T_{1}, Baire semitopological group that is a p-space is a topological group. Then we have the following corollary.

Corollary 2.3 (Arhangel'skii and Reznichenko). ([5]) Every regular T_{1}, Baire symmetrizable paratopological group is a metrizable topological group.

Example 2.1. There exists a separable, developable, Hausdorff paratopological group that is not metrizable.
Proof. Let $(\mathbb{R},+),(\mathbb{Q},+)$ be real numbers, rational numbers groups with usual addition respectively. Let $(G,+)=(\mathbb{R},+) \times$ $(\mathbb{Q},+)$, and define

$$
\left(a_{1}, r_{1}\right)+\left(a_{2}, r_{2}\right)=\left(a_{1}+a_{2}, r_{1}+r_{2}\right), \quad \text { for each }\left(a_{1}, r_{1}\right),\left(a_{2}, r_{2}\right) \in(G,+)
$$

Then $(G,+)$ is a Abelian group. Define a neighborhood base of $(a, r) \in G$ as follow:

$$
\mathcal{B}_{(a, r)}=\{\{(a, r)\} \cup((a-1 / n, a+1 / n) \times(r, r+1 / n)): n \in \mathbb{N}\}
$$

G is a topological space with topology generated by $\bigcup\left\{\mathcal{B}_{(a, r)}:(a, r) \in G\right\}$. It is easy to see that $(G,+)$ is a Hausdorff space. Since

$$
\begin{aligned}
& \left\{\left(a, r_{1}\right)\right\} \cup(a-1 / 4 n, a+1 / 4 n) \times\left(r_{1}, r_{1}+1 / 4 n\right)+\left\{\left(b, r_{2}\right)\right\} \cup(b-1 / 4 n, b+1 / 4 n) \times\left(r_{2}, r_{2}+1 / 4 n\right) \\
& \quad \subset\left\{\left(a+b, r_{1}+r_{2}\right)\right\} \cup(a+b-1 / n, a+b+1 / n) \times\left(r_{1}+r_{2}, r_{1}+r_{2}+1 / n\right)
\end{aligned}
$$

the operation ' + ' is jointly continuous, hence $(G,+)$ is a first-countable paratopological group. G is also separable since $\mathbb{Q} \times \mathbb{Q}$ is a countable dense subset of G. Fix $r \in \mathbb{Q}$, it is easy to see that $\{(a, r): a \in \mathbb{R}\}$ is closed discrete (uncountable) subset of G, then G is not metrizable.

Since $G=\bigcup_{r \in \mathbb{Q}}\{(a, r): a \in \mathbb{R}\}$, then G has a σ-discrete network, hence it is a σ-space, therefore it is a β-space [12, Theorem 7.8]. By Corollary 2.1, G is a developable space.

Remark. Example 2.1 gives a partial answer to [25, Question 3.2]: Is every Moore paratopological group metrizable? Example 2.1 also shows that a first-countable paratopological groups need not be meta-Lindelöf.

Definition 2.1 (Borges). ([12, Definition 5.6]) A space is called stratifiable if there is a function G which assigns to each $n \in \omega$ and closed set $H \subset X$, an open set $G(n, H)$ containing H such that
(i) $H=\bigcap_{n \in \omega} G(n, H)$;
(ii) $H \subset K$ implies $G(n, H) \subset G(n, K)$;
(iii) $H=\bigcap_{n \in \omega} \overline{G(n, H)}$.

Lemma 2.3. ([12, Theorem 5.8]) A regular T_{1} space (X, τ) is stratifiable if and only if there exists a function $g: \omega \times X \rightarrow \tau$ such that (i) $\{x\}=\bigcap_{n \in \omega} g(n, x)$; (ii) if $y \in g\left(n, x_{n}\right)$, then $x_{n} \rightarrow y$; (iii) if $y \notin H$, where H is closed, then $y \notin \overline{\bigcup\{g(n, x): x \in H\}}$ for some $n \in \omega$.

A symmetric $d: G \times G \rightarrow \mathbb{R}^{+} \cup\{0\}$ of a paratopological group G is called left-invariant if for any $a, x, y \in G, d(x, y)=$ $d(a x, a y)$.

Theorem 2.1. Let G be a regular T_{1} paratopological group with a left-invariant symmetric. Then G is metrizable.
Proof. Let $d: G \times G \rightarrow \mathbb{R}^{+} \cup\{0\}$ be a left-invariant symmetric, and let e be the neutral element of G. Since G is weakly first-countable, by Lemma 2.2, G is first-countable, hence G is quasi-metrizable by Proposition 2.1.

Now we prove that G is a stratifiable space. Put

$$
B\left(x, 1 / 2^{n}\right)=\left\{y \in G: d(x, y)<1 / 2^{n}\right\}
$$

and fix a local base $\left\{V_{n}: n \in \omega\right\}$ at e such that $V_{n} \subset \operatorname{int}\left(B\left(e, 1 / 2^{k_{n}}\right)\right), V_{n+1}^{2} \subset V_{n}$ and $d(e, x)>1 / 2^{k_{n+1}}$ if $x \notin V_{n}$, where $n<k_{n}<k_{n+1}$. Define

$$
g(n, x)=x V_{n}, \quad \text { for each } n \in \omega, x \in G
$$

Obviously, (i) of Lemma 2.3 is satisfied. For each $n \in \omega$, if $y \in g\left(n, x_{n}\right)=x_{n} V_{n}$, then $x_{n}^{-1} y \in V_{n}$, so

$$
d\left(x_{n}, y\right)=d\left(x_{n}^{-1} x_{n}, x_{n}^{-1} y\right)=d\left(e, x_{n}^{-1} y\right)<1 / 2^{k_{n}}
$$

hence $x_{n} \rightarrow y$. (ii) of Lemma 2.3 is satisfied. Let H be a closed subset of $G, y \notin H$, then $y V_{n} \cap H=\emptyset$ for some $n \in \omega$.
Claim. $y V_{n+2} \cap g(n+2, x)=\emptyset$ for each $x \in H$.
Suppose not, let $z \in y V_{n+2} \cap x V_{n+2}$, then $x^{-1} z \in V_{n+2}, d(z, x)=d\left(x^{-1} z, e\right)<1 / 2^{k_{n+2}} . z^{-1} x \in V_{n+1}$, otherwise $d\left(z^{-1} x, e\right)>$ $1 / 2^{k_{n+2}}$. Since $z^{-1} x \in V_{n+1}, x \in z V_{n+1} \subset y V_{n+2} V_{n+1} \subset y V_{n}$, this is a contradiction with $y V_{n} \cap H=\emptyset$.
$y V_{n+2} \cap(\bigcup\{g(n+2, x): x \in H\})=\emptyset$, then $y \notin \overline{\bigcup\{g(n+2, x): x \in H\}}$. By Lemma 2.3, G is stratifiable, hence G is metrizable by [12, Corollary 10.8(ii)].

3. Topological groups with a point-countable covers

All spaces in this section are regular T_{1} unless stated otherwise.
A cover \mathcal{P} of a topological space X is point-countable (point-finite) if every point of X belongs to at most countably many (finitely many) elements of \mathcal{P}. For a cover \mathcal{P} of a space X we say that X is determined by \mathcal{P} [13] provided that a set $F \subset X$ is closed in X if and only if its intersection $F \cap P$ with every $P \in \mathcal{P}$ is closed in P.

Let \mathcal{P} be a family of subsets of a space X. Then \mathcal{P} is a cs-network at a point $x \in X$ if whenever $\left\{x_{n}\right\}$ is a sequence converging to x and U is a neighborhood of x, there are $k \in \omega$ and $P \in \mathcal{P}$ such that $\{x\} \cup\left\{x_{n}: n \geqslant k\right\} \subset P \subset U$. Similarly, \mathcal{P} is a cs*-network at a point $x \in X$ if whenever $\left\{x_{n}\right\}$ is a sequence converging to x and U is a neighborhood of x, there are an infinite $A \subset \omega$ and $P \in \mathcal{P}$ such that $\{x\} \cup\left\{x_{n}: n \in A\right\} \subset P \subset U$.

Lemma 3.1. Let X be a space determined by a point-countable cover \mathcal{P} consisting of first-countable subsets. Then X is a sequential spaces with a countable cs-network at each point in X.

Proof. Let Z be the disjoint topological sum $\bigoplus \mathcal{P}$ of \mathcal{P}, and $f: Z \rightarrow X$ be the obvious map. Then f is a quotient map by [13, Lemma 1.8]. Since Z is first-countable, X is a sequential space. Fix a point $x \in X$, and let

$$
\mathcal{P}_{x}=\{P \in \mathcal{P}: x \in P\}=\left\{P_{n}: n \in \omega\right\} .
$$

Each P_{n} is first-countable, let $\{V(n, i): i \in \omega\}$ be countable local base at x in P_{n}, then $\{V(n, i): n, i \in \omega\}$ is a countable $c s^{*}-$ network at x. In fact, let $\left\{x_{k}\right\}$ be a sequence converging to $x \in U$ with U open in X, then there is a sequence L converging
to some point z in Z such that $f(L)$ is a sequence of $\left\{x_{k}\right\}$ by [27, Lemma 1.6]. Since $z \in f^{-1}(x) \subset f^{-1}(U)$, then $z=x \in P_{n}$ in Z for some $n \in \omega$, and $V(n, m) \subset f^{-1}(U) \cap P_{n}$ in Z for some $m \in \omega$. We can assume that $L \subset V(n, m)$ in Z, then $\{x\} \cup f(L) \subset V(n, m) \subset U$ in X. Hence $\{V(n, i): n, i \in \omega\}$ is a countable cs*-network at x. By [26, Lemma 2.2], X has a countable cs-network at every $x \in X$.

The S_{κ} is the quotient space obtained from the disjoint sum of κ many convergent sequences vis identifying limit points of all these sequences. S_{ω} is called sequential fan.

A topological space X is called an α_{4}-space (α_{7}-space), if for any sequence $S_{n} \subset X(n \in \omega)$, converging to a point $x \in X$ there is a sequence $S \subset X$ converging to x (some point $y \in X$) and such that $S_{n} \cap S \neq \emptyset$ for infinitely many sequences S_{n}.

Lemma 3.2. If a sequential space X has no closed copy of S_{ω}, then X is an α_{7}-space.
Proof. Let $\left\{S_{n}: n \in \omega\right\}$ be a collection of convergent sequences in X with $S_{n} \rightarrow x \in X$ for each $n \in \omega$. Put $Z=\{x\} \cup$ $\left(\bigcup\left\{S_{n}: n \in \omega\right\}\right)$.

If Z is not closed in X, there is a sequence $S \subset Z$ such that S converges to some point $y \in X \backslash Z$ because X is a sequential space. Then $S_{n} \cap S \neq \emptyset$ for infinitely many sequences S_{n}. If Z is closed in X, then it is not a copy of S_{ω}. There exists $x_{k} \in S_{n_{k}}(k \in \omega)$ such that $\left\{x_{k}: k \in \omega\right\}$ is not closed in Z. Thus there is a convergent sequence $S \subset\left\{x_{k}: k \in \omega\right\}$. Hence X is an α_{7}-space.

Theorem 3.1. Let G be a paratopological group determined by a point-countable cover consisting of first-countable subsets. Then G is first-countable if it contains no closed copy of S_{ω}.

Proof. By Lemmas 3.1 and 3.2, G is an α_{7}-space. Then G has countable $s b$-character ${ }^{3}$ by the same proof of [7, Lemma 3]. It is easy to check that a sequential space having countable $s b$-character is weakly first-countable, then G is first-countable by Lemma 2.2.

Corollary 3.1. Let G be a topological group determined by a point-countable cover consisting of first-countable subsets. Then G is metrizable if it contains no closed copy of S_{ω}.

Remark. Corollary 3.1 gives a partial answer to Nogura-Shakhmatov-Tanaka's question [23, Questions 3.9 and 3.10].

Corollary 3.2. A paratopological group G determined by a point-finite cover consisting of first-countable subspaces is first-countable.

Proof. By [23, Lemma 2.7], G is an α_{4}-space. Then G contains no closed copy of S_{ω}, hence G is first-countable by Theorem 3.1.

The following lemma is a easy modification of Lemma 4 in [7].

Lemma 3.3. Let $(G, *)$ be a sequential topological group. Then G contains no closed copy of S_{ω} or every first-countable closed subset of G is locally countably compact.

Proof. Suppose not, $(G, *)$ contains a closed copy of $S_{\omega}=\{e\} \cup\left\{x_{n, m}: n, m \in \omega\right\}$, where $x_{n, m} \rightarrow e$ as $m \rightarrow \infty$ for each $n \in \omega$. $(G, *)$ also contains a closed first-countable subset H that is not locally countably compact. Without loss of generality, we assume $e \in H$ and e has a countable decreasing local base $\left\{V_{n}: n \in \omega\right\}$ at e in H, each V_{n} is not locally countably compact. For each $n \in \omega$, let $\left\{y_{n, m}: m \in \omega\right\} \subset V_{n}$ be a closed discrete subset of H. Fix n, it is easy to see that $D_{n}=\left\{x_{n, m} * y_{n, m}: m \in \omega\right\}$ is closed and discrete in $(G, *)$. Hence there exists $k_{n} \in \omega$ such that $e \neq x_{n, m} * y_{n, m}$ for all $m>k_{n}$. So we may assume that $e \notin\left\{x_{n, m} * y_{n, m}: m \in \omega\right\}$. Let $A=\left\{x_{n, m} * y_{n, m}: n, m \in \omega\right\}$, then $e \in \overline{A \backslash\{e\}}$. A is not closed, since $(G, *)$ is sequential, there is a sequence $S \subset A$ convergent to a point $a \notin A$. D_{n} is closed and discrete, then $S \cap D_{n}$ is finite. Consequently, there is a subsequence $\left\{x_{n_{i}, m_{i}} * y_{n_{i}, m_{i}}: i \in \omega\right\} \subset S$ with $n_{i+1}>n_{i}$. Since $y_{n_{i}, m_{i}}^{-1} \rightarrow e, x_{n_{i}, m_{i}} * y_{n_{i}, m_{i}} * y_{n_{i}, m_{i}}^{-1} \rightarrow a * e=a$, i.e. $x_{n_{i}, m_{i}} \rightarrow a$. This is a contradiction since $\left\{x_{n_{i}, m_{i}}: i \in \omega\right\}$ is discrete.

Recall the concept of k-networks. A collection \mathcal{P} of subsets of a space X is a k-network [12] if whenever K is a compact subset of an open set U in X, there exists a finite $\mathcal{P}^{\prime} \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{P}^{\prime} \subset U$.

[^2]Remark. If a space X is determined by a point-countable cover \mathcal{P} consisting of metric subsets. Then the space Z in the proof of Lemma 3.1 is metrizable and the obvious map $f: Z \rightarrow X$ is a quotient s-map, hence X has a point-countable k-network by [13, Theorem 6.1].

Lemma 3.4. Let X a k-space with a point-countable k-network, in which every closed first-countable subset is locally countably compact. Then X has a point-countable k-network consisting of cosmic subsets.

Proof. Since every closed first-countable subset in X is locally countably compact, X has a point-countable k-network \mathcal{P} such that \bar{P} is countably compact in X for each $P \in \mathcal{P}$ by [15, Theorem 2.3]. For each $P \in \mathcal{P}, \bar{P}$ is compact metrizable by [13, Theorem 4.1], then P is a cosmic subspace ${ }^{4}$ in X.

Lemma 3.5. ([18, Corollary 2.7]) Let G be a sequential topological groups with a point-countable k-network consisting of cosmic subsets. Then G has an open subgroup which is cosmic.

Theorem 3.6. Let G be a sequential topological group with a point-countable k-network. Then G is a metrizable space or a topological sum of cosmic spaces.

Proof. By Lemma 3.3, we consider following two cases:

Case 1. G contains no closed copy of S_{ω}.
Since a k-space that has a point-countable k-network and contains no closed copy of S_{ω} is weakly first-countable [14, Theorem 3.13 and Corollary 3.9], hence G is metrizable by Lemma 2.2.

Case 2. Every closed first-countable subset is locally countably compact.

By Lemmas 3.4 and $3.5, G$ is a topological sum of cosmic subspaces.
Corollary 3.3. A sequential topological group with a point-countable k-network is paracompact.

4. Symmetrizable semitopological groups

In [10], Cao, Drozowski and Piotrowski asked if every symmetrizable semitopological group is a Moore space. They further asked "Must every symmetrizable Hausdorff Baire semitopological group be a topological group?" The answer is "No". In fact, a symmetrizable semitopological group need not be first-countable.

Example 4.1. There is a separable, symmetrizable, Hausdorff semitopological group that is not first-countable.
Proof. Let $G=\mathbb{R}^{2}$ with usual addition " + ", then $(G,+)$ is a group. Define $d: G \times G \rightarrow \mathbb{R}^{+} \cup\{0\}$ as follow:

$$
d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)= \begin{cases}\left|x-x^{\prime}\right|, & x \neq x^{\prime}, y=y^{\prime} \\ \left|y-y^{\prime}\right|, & x=x^{\prime}, y \neq y^{\prime} \\ 0, & x=x^{\prime}, y=y^{\prime} \\ 1, & \text { otherwise }\end{cases}
$$

It is easy to check that G is Hausdorff and d is a symmetric on $(G,+)$. Endow $(G,+)$ with the topology generated by d, then $(G,+)$ is a semitopological group. $\mathbb{Q} \times \mathbb{Q} \subset(G,+)$ is a countable dense subset of G. In fact, let V be an open subset of G. Pick $x=\left(x^{\prime}, x^{\prime \prime}\right) \in V$, there exists $n \in \mathbb{N}$ such that $\{y \in G: d(x, y)<1 / n\} \subset V$, we find $r^{\prime} \in \mathbb{Q}$ with $\left|r^{\prime}-x^{\prime}\right|<1 / n$, then $z=\left(r^{\prime}, x^{\prime \prime}\right) \in V$. There exists $k \in \mathbb{N}$ such that $\{y \in G: d(z, y)<1 / k\} \subset V$, find $r^{\prime \prime} \in \mathbb{Q}$ with $\left|r^{\prime \prime}-x^{\prime \prime}\right|<1 / k$, then $\left(r^{\prime}, r^{\prime \prime}\right) \in V$, therefore G is separable. But G is not first-countable since no sequence in $\mathbb{Q} \times \mathbb{Q}$ converges to ($p^{\prime}, p^{\prime \prime}$), where $p^{\prime}, p^{\prime \prime}$ are irrational numbers.

A space X is said to be semi-metric [12] if there is a symmetric d on X such that for each $x \in X,\{B(x, \varepsilon): \varepsilon>0\}$ forms a neighborhood base at x.

Example 4.2. There is a separable, Baire, semi-metric, semitopological group that is not a paratopological group.

[^3]Proof. Let $G=\left(\mathbb{R}^{2},+\right)$ with the 'bowtie' topology [12]; that is, a neighborhood $U((s, t), \varepsilon, \delta)$ of a point $(s, t) \in G$ is the 'bowtie':

$$
\{(s, t)\} \cup\left\{\left(s^{\prime}, t^{\prime}\right): 0<\left|s-s^{\prime}\right|<\varepsilon,\left|\left(t^{\prime}-t\right) /\left(s^{\prime}-s\right)\right|<\delta\right\}
$$

where $\varepsilon>0$ and $\delta>0$ can vary.
Define

$$
d\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right)= \begin{cases}0, & s=s^{\prime}, t=t^{\prime} \\ 1, & s=s^{\prime}, t \neq t^{\prime} \\ \left|s-s^{\prime}\right|+\left|\left(t-t^{\prime}\right) /\left(s-s^{\prime}\right)\right|, & \text { otherwise }\end{cases}
$$

It is easy to check that G is regular T_{1}, d is semi-metric and G is a separable, semitopological group.
We prove that G is a Baire space. Let \mathbb{R}^{2} be the real plane with usual topology.
Let $\left\{V_{n}: n \in \mathbb{N}\right\}$ be a sequence of open dense subsets of G. Fix $n \in \mathbb{N}$, for $(s, t) \in V_{n}, U((s, t), 1 / m, 1 / m) \subset V_{n}$ for some $m \in \mathbb{N}$, let

$$
W_{n}(s, t)=U((s, t), 1 / m, 1 / m) \backslash\{(s, t)\}, \quad W_{n}=\bigcup\left\{W_{n}(s, t):(s, t) \in V_{n}\right\}
$$

Since $W_{n}(s, t)$ is open in \mathbb{R}^{2} and V_{n} is dense in G, W_{n} is an open dense subset in \mathbb{R}^{2}. It is well known that \mathbb{R}^{2} has Baire property, then $\bigcap_{n \in \mathbb{N}} W_{n}\left(\subset \bigcap_{n \in \mathbb{N}} V_{n}\right)$ is dense in \mathbb{R}^{2}. Since every open subset in G contains an open subset in $\mathbb{R}^{2}, \bigcap_{n \in \mathbb{N}} W_{n}$ is dense in G, hence $\bigcap_{n \in \mathbb{N}} V_{n}$ is dense in G.
G is not a paratopological group.
Suppose not, then G is a Moore space by Corollary 2.2, hence a p-space. By Bouziad's result [8], G is a topological group, hence a separable metric space. But it is easy to see $\{(0, t): t \in \mathbb{R}\}$ is discrete, this is a contradiction.

5. Remainders of (para-)topological groups

All spaces in this section are regular T_{1} unless stated otherwise.
In this section, we discuss the remainders of topological groups and paratopological groups in Hausdorff compactifications.

By a remainder of a Tychonoff space X we understand the subspace $b X \backslash X$ of a Hausdorff compactification $b X$ of X.
A space X is said to have a regular G_{δ}-diagonal if the diagonal $\Delta=\{(x, x): x \in X\}$ can be represented as the intersection of the closures of a countable family of open neighborhoods of Δ in $X \times X$. According to Zenor [28], a space X has a regular G_{δ}-diagonal if and only if there exists a sequence $\left\{\mathcal{G}_{n}: n \in \omega\right\}$ of open covers of X with the following property:
$\left({ }^{*}\right)$ For any two distinct point y and z in X, there are open neighborhoods O_{y} and O_{z} of y and z, respectively, and $k \in \omega$ such that no element of \mathcal{G}_{k} intersects both O_{x} and O_{y}.

Arhangel'skii [3] proved that if a remainder of a non-locally compact topological group in a Hausdorff compactification has a G_{δ}-diagonal, then G is separable and metrizable. This is not true when G is a paratopological group. In fact, Alexandorff's double-arrow space is a Hausdorff compactification of Sorgenfrey line, its remainder is still a copy of Sorgenfrey line, so the remainder has a regular G_{δ}-diagonal [16], but Sorgenfrey line is not metrizable. We may ask the following question:

Question 5.1. Let G be a non-locally compact paratopological group. Suppose the remainder $Y=b G \backslash G$ has a regular $G_{\delta^{-}}$ diagonal, does G have a regular G_{δ}-diagonal?

The following theorem gives a partial answer to the above question.

Theorem 5.1. Let G be a non-locally compact Abelian paratopological group in which every compact subset is first-countable. Suppose the remainder $Y=b G \backslash G$ has a regular G_{δ}-diagonal, then G has a regular G_{δ}-diagonal.

Proof. We consider following two cases:

Case 1. Y is pseudocompact.

Since Y has a regular G_{δ}-diagonal, the Y is metrizable, hence Y is compact. It means that G is locally compact. This is a contradiction.

Case 2. Y is not pseudocompact.

By [4, Lemma 2.1], there exists a non-empty compact subspaces F of G which has a countable strong π-base ${ }^{5}\left\{V_{n}: n \in \mathbb{N}\right\}$ in G, we may assume $V_{n+1} \subset V_{n}$ (in fact, we may consider $\left\{\bigcup_{n \geqslant k} V_{n}: k \in \mathbb{N}\right\}$).

Claim. There exists $x \in F$ such that any neighborhood of x in G meets every V_{n}.
Suppose not, for each $x \in F$, there is an neighborhood $V(x)$ of x in G and $n(x) \in \mathbb{N}$ such that $V(x) \cap V_{n}=\emptyset$ for $n>n(x)$. $F \subset \cup\left\{V\left(x_{i}\right): i \leqslant k\right\}$ for some k. Let $n_{0}=\max \left\{n\left(x_{i}\right): i \leqslant k\right\}, V_{n} \cap\left(\bigcup\left\{V\left(x_{i}\right): i \leqslant k\right\}\right)=\emptyset$ for each $n>n_{0}$, this is a contradiction.

Fix $x \in F$ such that any neighborhood of x meets every V_{n}. F is first-countable, let $\left\{W_{n}: n \in \mathbb{N}\right\}$ be a decreasing base at x in $F . W_{n}=F \cap U_{n}$, where U_{n} is open in G, we may assume $U_{n+1} \subset U_{n}$. Let $R_{n}=V_{n} \cap U_{n}$ for $n \in \mathbb{N},\left\{R_{n}: n \in \mathbb{N}\right\}$ is a decreasing strong π-base converging to x. Without loss of generality, we assume $x=e$.

Let $\mathcal{G}_{n}=\left\{x R_{n}: x \in G\right\}$ for each n, then $\left\{\mathcal{G}_{n}: n \in \mathbb{N}\right\}$ is a sequence of open coverings of G. By Zenor's characterization [28] of regular G_{δ}-diagonal, we only prove the following: For $y, z \in G, y \neq z$, there is $k \in \mathbb{N}$ such that no element of \mathcal{G}_{k} intersects both $y^{\prime} R_{k}$ and $z^{\prime} R_{k}$, where $y \in y^{\prime} R_{k}, z \in z^{\prime} R_{k}$.

Suppose not; for any $n \in \mathbb{N}$, there is an element $x_{n} R_{n} \in \mathcal{G}_{n}$ and $y_{n}, z_{n} \in G$ such that $y \in y_{n} R_{n}, z \in z_{n} R_{n}, y_{n} R_{n} \cap x_{n} R_{n} \neq \emptyset$ and $z_{n} R_{n} \cap x_{n} R_{n} \neq \emptyset$. Then there exist $a_{n}, b_{n}, c_{n}, d_{n}, u_{n}, v_{n} \in R_{n}$ such that

$$
y=y_{n} u_{n}, \quad z=z_{n} v_{n} \quad \text { and } \quad y_{n} a_{n}=x_{n} b_{n}, \quad x_{n} c_{n}=z_{n} d_{n}
$$

Then $x_{n}=b_{n}^{-1} a_{n} y_{n}=b_{n}^{-1} a_{n} u_{n}^{-1} y$. On the other hand, $x_{n}=c_{n}^{-1} z_{n} d_{n}=c_{n}^{-1} d_{n} v_{n}^{-1} z$. Then $b_{n}^{-1} a_{n} u_{n}^{-1} y=c_{n}^{-1} d_{n} v_{n}^{-1} z$, hence $y z^{-1}=a_{n}^{-1} c_{n}^{-1} v_{n}^{-1} b_{n} u_{n} d_{n}$. Since $a_{n} c_{n} v_{n} \rightarrow e(n \rightarrow \infty)$, then $a_{n} c_{n} v_{n} a_{n}^{-1} c_{n}^{-1} v_{n}^{-1} b_{n} u_{n} d_{n} \rightarrow y z^{-1}, b_{n} u_{n} d_{n} \rightarrow y z^{-1}$, but $b_{n} u_{n} d_{n} \rightarrow e$, that means $y z^{-1}=e$, therefore $y=z$. this is a contradiction.
G has a regular G_{δ}-diagonal.

Lemma 5.1. ([9]) Suppose X is of countable tightness and $A \subset X$. If \mathcal{P} is any point-countable collection of X, then there are at most countably many minimal finite subcollections $\mathcal{F} \subset \mathcal{P}$ such that $A \subset(\bigcup \mathcal{F})^{\circ}$.

Let X be a space and $x \in X$. A collection of nonempty open sets \mathcal{U} of X is called a π-base at x if for every open set O with $x \in O$, there exists an $U \in \mathcal{U}$ such that $U \subset O$. The idea of the following lemma bases on the proof of [13, Proposition 3.2].

Lemma 5.2. Let X be a pseudo-open s-image of a space with a point-countable base. Then X has a countable π-base at each point.

Proof. Since X is a pseudo-open s-image of a space with a point-countable base, by [13, Propositions 6.2 and 6.3(a)], X is a pseudo-open s-image of a metric space. Tanaka [27] characterized a pseudo-open s-images of a metric spaces as a Fréchet space with a point-countable $c s^{*}$-network. Let \mathcal{P} be a point-countable $c s^{*}$-network of X.

Fix $x \in X$, if x is an isolated point, the X has a countable π-base at x. If x is not an isolated point, there is a non-trivial sequence $C_{0}=\left\{x_{n}: n \in \mathbb{N}\right\}$ converging to x. We may assume that each x_{n} is not an isolated point. Otherwise $\left\{\left\{x_{n}\right\}: x_{n}\right.$ is an isolated point $\}$ is a countable π-base at x.

Put

$$
\begin{aligned}
& \mathcal{F}=\left\{F: F \subset C_{0},|F|<\omega\right\}, \quad \mathcal{E}=\left\{C_{0} \backslash F: F \in \mathcal{F}\right\} \\
& \mathcal{G}_{E}=\left\{\left(\bigcup \mathcal{P}^{\prime}\right)^{\circ}: E \subset\left(\bigcup \mathcal{P}^{\prime}\right)^{\circ}, \mathcal{P}^{\prime} \text { is a minimal finite subcollection of } \mathcal{P}\right\}
\end{aligned}
$$

By Lemma 5.1, \mathcal{G}_{E} is countable.
Let $\mathcal{G}=\left\{\mathcal{G}_{E}: E \in \mathcal{E}\right\}$.
Claim. \mathcal{G} is a π-base at x.
Suppose not, there is an open neighborhood V of x such that V contains no element of \mathcal{G}. Without loss of generality, we assume $\left\{x_{n}: n \in \mathbb{N}\right\} \subset V$. Let $\mathcal{Q}=\{P \in \mathcal{P}: P \subset V\}$. Then there is no finite subcollection $\mathcal{P}^{\prime \prime} \subset \mathcal{Q}$ such that $\left(\bigcup \mathcal{P}^{\prime \prime}\right)^{\circ}$ contains any element of \mathcal{E}.

Let $\mathcal{Q}(A)=\{P \in \mathcal{Q}: P \cap A \neq \emptyset\}$ for $A \subset X$. Since \mathcal{Q} is point-countable, we write $\mathcal{Q}\left(C_{0}\right)=\left\{P_{n, 0}: n \in \mathbb{N}\right\}$.
$P_{1,0}^{\circ}$ does not contain any element of \mathcal{E}, there exists $x_{n_{1}} \notin P_{1,0}^{\circ}$. Since X is Fréchet, there is a sequence $C_{1} \subset V \backslash\left(P_{1,0} \cup\{x\}\right)$ converging to $x_{n_{1}}$. We write $\mathcal{Q}\left(C_{1}\right)=\left\{P_{n, 1}: n \in \mathbb{N}\right\}$. $\left(\bigcup\left\{P_{i, j}: i \leqslant 2, j<2\right\}\right)^{\circ}$ does not contain any element of \mathcal{E}, there exists $x_{n_{2}} \notin\left(\bigcup\left\{P_{i, j}: i \leqslant 2, j<2\right\}\right)^{\circ}$ with $n_{2}>n_{1}$. Then there is a sequence $C_{2} \subset V \backslash\left(\left(\bigcup\left\{P_{i, j}: i \leqslant 2, j<2\right\}\right) \cup\{x\}\right)$. By induction, we can choose countable sequences $C_{i}, x_{n_{i}}(i \in \mathbb{N})$ such that $n_{i}<n_{j}$ if $i<j, x \notin C_{i}$ and $C_{n} \cap P_{i, j}=\emptyset$ for $i \leqslant n, j<n$. The

[^4]last condition implies that no $P \in \mathcal{Q}$ meets infinitely many C_{i}. Put $C=\bigcup\left\{C_{i}: i \in \omega\right\}, x \in \bar{C}$, then there is a sequence $K \subset V$ converging to x. Since \mathcal{P} is a cs*-network, there is a $P \in \mathcal{P}$ such that $x \in P \subset V$ and P contains infinitely many elements of K, hence $P \in \mathcal{Q}$ and P meets infinitely many C_{i}, this is a contradiction.

It was proven that [17, Theorem 4] a non-locally compact topological group G and its Hausdorff compactification $b G$ are separable and metrizable if its remainder is a quotient s-image of a space with a point-countable base and has countable π-base at each point. By applying Lemma 5.2, we have the following.

Theorem 5.2. Let G be a non-locally compact topological group, if the remainder $Y=b G \backslash G$ of a Hausdorff compactification of G is a pseudo-open s-image of a space with a point-countable base, then G and bG are separable and metrizable.

Question 5.2. Let G be a non-locally compact topological group, if the remainder $Y=b G \backslash G$ of a Hausdorff compactification of G has a point-countable weak base, are G and $b G$ separable and metrizable?

References

[1] A.V. Arhangel'skii, Mappings and spaces, Uspekhi Mat. Nauk 21 (4) (1966) 133-184 (in Russian).
[2] A.V. Arhangel'skii, On biradial topological spaces and groups, Topology Appl. 36 (1990) 173-180.
[3] A. Arhangel'skii, More on remainders close to metrizable spaces, Topology Appl. 154 (2007) 1084-1088.
[4] A. Arhangel'skii, Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008) 119-126.
[5] A.V. Arhangel'skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005) 107-119.
[6] A.V. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, 2009.
[7] T. Banakh, L. Zdomskyí, The topological structure of (homogeneous) spaces and groups with countable cs*-character, Appl. Gen. Topology 5 (1) (2004) 25-48.
[8] A. Bouziad, Continuity of separately continuous group action in p-spaces, Topology Appl. 111 (1996) 119-124.
[9] D.K. Burke, E.A. Michael, On certain point-countable covers, Pacific J. Math. 64 (1976) 79-92.
[10] J. Cao, R. Drozowski, Z. Piotrowski, Weak continuity properties of topologized groups, Czechoslovak Math. J. 60 (135) (2010) 133-148.
[11] R. Engelking, General Topology, revised and completed edition, Heldermann-Verlag, Berlin, 1989.
[12] G. Gruenhage, Generalized metric spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423-501.
[13] G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (2) (1984) 303-332.
[14] S. Lin, A note on the Arens' space and sequential fan, Topology Appl. 81 (1997) 185-196.
[15] S. Lin, A note on closed images of locally compact metric spaces, Acta Math. Hungar. 109 (1-2) (2005) 157-162.
[16] C. Liu, A note on paratopological groups, Comment. Math. Univ. Carolin. 47 (4) (2006) 633-640.
[17] C. Liu, Remainders in compactifications of topological groups, Topology Appl. 156 (2009) 849-854.
[18] C. Liu, M. Sakai, Y. Tanaka, Topological groups with a certain point-countable cover, Topology Appl. 119 (2002) 209-217.
[19] C. Liu, Y. Tanaka, Spaces and networks: Special networks, in: E. Pearl (Ed.), Open Problems in Topology II, Elsevier Science Publishers B.V., 2007, pp. 23-34.
[20] M. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972) 91-138.
[21] E. Michael, R.C. Olson, F. Siwiec, A-spaces and countably bi-quotient maps, Dissertationes Math. 133 (1976) 5-43.
[22] S.J. Nedev, M.M. Choban, On the theory of o-metrizable spaces I, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 27 (1) (1972) 8-15.
[23] T. Nogura, D. Shakhmatov, Y. Tanaka, Metrizability of topological groups having weak topologies with respect to good covers, Topology Appl. 54 (1993) 203-212.
[24] P. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (4) (1981) 793-801.
[25] O.V. Ravsky, Paratopological groups I, Matematychni Studii 16 (2001) 37-48.
[26] M. Sakai, Function spaces with a countable cs*-network at a point, Topology Appl. 156 (2008) 117-123.
[27] Y. Tanaka, Point-countable covers and k-networks, Topology Proc. 12 (1987) 327-349.
[28] P. Zenor, On spaces with regular G_{δ}-diagonals, Pacific J. Math. 40 (1972) 759-763.

[^0]: * Corresponding author. Tel.: +1 740588 1419; fax: +1 7404536161.

 E-mail addresses: liuc1@ohio.edu (C. Liu), linshou@public.ndptt.fj.cn (S. Lin).
 1 The author is supported in part by the NSFC (No. 10971185) and NSF of Fujian Province of China (No. 2009J01013).

[^1]: 2 A space X is developable [12] if there is a sequence $\left\{\mathcal{U}_{n}\right\}$ of open covers of X such that $\left\{\operatorname{st}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ forms a local base at x for every $x \in X$, where $\operatorname{st}\left(x, \mathcal{U}_{n}\right)=\bigcup\left\{U \in \mathcal{U}_{n}: x \in U\right\}$.

[^2]: ${ }^{3}$ A space X is called to have countable sb-character if for every $x \in X$, there is a countable network \mathcal{P} at x consisting of the sequential neighborhoods of x, that is, every sequence converging to x is eventually in each element of \mathcal{P}.

[^3]: ${ }^{4}$ A space is called a cosmic space if it has a countable network.

[^4]: ${ }^{5}$ A strong π-base of a space X at a subset F of X is an infinite family γ of non-empty open subsets of X such that every open neighborhood of F contains all but finitely many elements of γ.

