Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Characterizing s-paratopological groups by free paratopological groups $\stackrel{\bigstar}{\Rightarrow}$

Zhangyong Cai^{a,*}, Shou Lin^b, Zhongbao Tang^c

^a School of Mathematics and Statistics, Guangxi Teachers Education University, Nanning 530023, PR China

^b Institute of Mathematics, Ningde Normal University, Ningde 352100, PR China
^c School of Mathematics, Sichuan University, Chengdu 610065, PR China

ARTICLE INFO

Article history: Received 11 November 2016 Received in revised form 18 August 2017 Accepted 19 August 2017 Available online 24 August 2017

MSC: 22A30 54A20 54B15 54C10

Keywords: s-Paratopological group Free paratopological group Continuous open epimorphism Quotient group

1. Introduction

A topological group is a group G with a topology such that the multiplication mapping of $G \times G$ to G is jointly continuous and the inverse mapping of G on itself is also continuous. The important notion of an *s*-topological group was introduced by N. Noble [11]. A topological group G is called an *s*-topological group if every sequentially continuous homomorphism from G to a topological group is continuous. Recall that a mapping $f : X \to Y$ between topological spaces X and Y is said to be sequentially continuous if

and its Applications

A paratopological group G is called an *s*-paratopological group if every sequentially continuous homomorphism from G to a paratopological group is continuous. In this paper, the structure of *s*-paratopological groups is established in terms of free paratopological groups. Namely, if G is a non-discrete T_1 paratopological group, then the following statements (1), (2), (3) and (4) are equivalent. (1) G is an *s*-paratopological group. (2) G is topologically isomorphic to a quotient group of a free paratopological group on a metrizable space. (3) G is topologically isomorphic to a quotient group of a free paratopological group on a T_1 Fréchet space. (4) G is topologically isomorphic to a quotient group of a free paratopological group on a T_1 sequential space.

@ 2017 Elsevier B.V. All rights reserved.

^{*} This research is supported by National Natural Science Foundation of China (No. 11471153), Guangxi Science Research and Technology Development Project of China (No. 1599005-2-13), Guangxi Natural Science Foundation of China (No. 2016GXNSFCA380009), Guangxi Department of Education of China (No. 2017KY0402) and Science Research Project from Guangxi Teachers Education University of China (No. 0819-2016L02).

^{*} Corresponding author.

E-mail addresses: zycaigxu2002@126.com (Z. Cai), shoulin60@163.com (S. Lin), 253408389@qq.com (Z. Tang).

 ${f(x_n)}_{n\in\omega}$ converges to f(x) in Y whenever a sequence ${x_n}_{n\in\omega}$ converges to x in X. In the past, some topologists were interested in investigating the properties of s-topological groups [2,8,9,11,18] etc.

A paratopological group is a group G with a topology such that the multiplication mapping of $G \times G$ to G is jointly continuous. The absence of the continuity of inversion, the typical situation in paratopological groups, makes the study in this area very different from that in topological groups. Concerning a recent survey in the theory of paratopological groups, readers may consult [20]. Many publications have appeared in this field with regard to one important question, i.e., when are various results on topological groups valid for paratopological groups? As a generalization of free topological groups, S. Romaguera, M. Sanchis, and M. Tkachenko [17] introduced free paratopological groups on arbitrary topological spaces and discussed some of their topological properties. M. Tkachenko [20, p. 851] thought that free paratopological groups should be a very useful tool for the study of general paratopological groups.

Definition 1.1. [17] Let X be a subspace of a paratopological group G. Suppose that

- (1) the set X generates G algebraically, that is, $\langle X \rangle = G$; and
- (2) every continuous mapping $f: X \to H$ of X to an arbitrary paratopological group H extends to a continuous homomorphism $\hat{f}: G \to H$.

Then G is called the Markov free paratopological group (briefly, free paratopological group) on X and is denoted by FP(X).

Let $F_a(X)$ denote the algebraic free group on a non-empty set X and e be the identity of $F_a(X)$. The set X is called the free basis of $F_a(X)$. Here are some details, for instance, see [3,16]. Every $g \in F_a(X)$ distinct from e has the form $g = x_1^{\epsilon_1} \cdots x_n^{\epsilon_n}$, where $x_1, \dots, x_n \in X$ and $\epsilon_1, \dots, \epsilon_n = \pm 1$. This expression or word for g is called reduced if it contains no pair of consecutive symbols of the form xx^{-1} or $x^{-1}x$ and we say in this case that the length l(g) of g equals to n. Every element $g \in F_a(X)$ distinct from the identity e can be uniquely written in the form $g = x_1^{r_1}x_2^{r_2}\cdots x_n^{r_n}$, where $n \ge 1$, $r_i \in \mathbb{Z} \setminus \{0\}$, $x_i \in X$ and $x_i \neq x_{i+1}$ for every $i = 1, \dots, n-1$.

Remark 1.2. It is well known that the topology of FP(X) is the finest paratopological group topology on the abstract free group $F_a(X)$ which induces the original topology on X [17].

Remark 1.3. If X is a T_1 -space, then FP(X) is also T_1 and X^{-1} is a closed and discrete subspace of FP(X) [5].

In this paper, inspired by the concept of an s-topological group, we shall introduce s-paratopological groups and make the first step towards the study of them. Our main purpose is to characterize s-paratopological groups in terms of free paratopological groups, hence, to establish the structure of s-paratopological groups.

Definition 1.4. A paratopological group G is called an *s*-paratopological group if every sequentially continuous homomorphism from G to a paratopological group is continuous.

Let X be a topological space. A subset P of X is called a sequential neighborhood of $x \in X$ in X if any sequence $\{x_n\}_{n\in\mathbb{N}}$ converging to x is eventually in P, i.e., $\{x_n : n \ge k_0\} \cup \{x\} \subset P$ for some $k_0 \in \mathbb{N}$. P is called a sequentially open subset of X if P is a sequential neighborhood of every point of P in X. The space X is called a sequential space [7] if every sequentially open subset of X is open in X. It is not difficult to check that every sequential paratopological group is an s-paratopological group. Particularly, the Sorgenfrey line is an s-paratopological group. By [19, Corollary 2.5], it is easy to see that there exists a topological

- The symbol \mathbb{N} denotes the set of all positive integers and $\omega = \{0\} \cup \mathbb{N}$. For every $n \in \mathbb{N}$, \mathbb{S}_n denotes the group of all permutations on the set $\{0, 1, ..., n-1\}$.
- Let G be a group and $\{A_m : m \leq n\}$ be a family of non-empty subsets of G for $n \in \mathbb{N}$. $A_1 \cdots A_n$ denotes the set $\{a_1 \cdots a_n : a_m \in A_m, m \leq n\}$.
- Let G be a group and $\{A_n\}_{n \in \omega}$ be a sequence of non-empty subsets of G. Following [12, Definition 3.1.3], we write

$$SP_{m \le n} A_m = \bigcup_{\sigma \in \mathbb{S}_{n+1}} A_{\sigma(0)} A_{\sigma(1)} \cdots A_{\sigma(n)}$$

and

$$SP_{n\in\omega}A_n = \bigcup_{n\in\omega}SP_{m\leq n}A_m = \bigcup_{n\in\omega}\bigcup_{\sigma\in\mathbb{S}_{n+1}}A_{\sigma(0)}A_{\sigma(1)}\cdots A_{\sigma(n)}.$$

For some unexplained terminology, readers may consult [3,6].

2. s-Paratopological groups and paratopologized sets

In this section, we introduce a crucial technical definition named *paratopologized set* to establish a few theorems required in order to describe the structure of *s*-paratopological groups in terms of free paratopological groups.

The following Lemma immediately follows from [12, Lemma 3.1.1].

Lemma 2.1. Let U be a neighborhood of the identity e in a paratopological group G. Then there exists a sequence $\{V_n\}_{n\in\omega}$ consisting of neighborhoods of the identity e in G such that $SP_{n\in\omega}V_n \subset U$.

The following description of a neighborhood base at the identity of a paratopological group is well known. For example, it appears in [10,14,15,17] etc.

Lemma 2.2. Let G be a paratopological group and \mathcal{N} be a base at the identity e of G. Then the family \mathcal{N} has the following four properties.

- (1) for every $U, V \in \mathcal{N}$, there exists $W \in \mathcal{N}$ with $W \subset U \cap V$;
- (2) for every $U \in \mathcal{N}$, there exists $V \in \mathcal{N}$ such that $VV \subset U$;
- (3) for every $U \in \mathcal{N}$ and $g \in U$, there exists $V \in \mathcal{N}$ such that $gV \subset U$;
- (4) for every $U \in \mathcal{N}$ and $g \in G$, there exists $V \in \mathcal{N}$ such that $gVg^{-1} \subset U$.

Conversely, if \mathcal{N} is a family of subsets of an abstract group G containing the identity e of G and satisfying (1)-(4), then G admits the unique topology \mathcal{T} that makes it a paratopological group with \mathcal{N} being a base at e. In addition, if $\{e\} = \bigcap \mathcal{N}$, then the topology \mathcal{T} satisfies the T_1 -separation axiom.

Definition 2.3. Let G be an abstract group and S be a set of sequences in G. The set S is called a *paratopologized set* (briefly, PT-set) in G if there is a T_1 paratopological group topology on G in which all sequences of S converge to the identity e of G. The finest T_1 paratopological group topology on G with this property is denoted by τ_S .

Here, we give a criterion for a set to be a PT-set in an abstract group.

Theorem 2.4. Let G be a group with identity e and $S = \{S_i : i \in I\}$ be a set of sequences in G, where $S_i = \{x_n^i\}_{n \in \omega}$ for every $i \in I$. Then the following statements (a), (b), and (c) are equivalent.

- (a) The topology τ_S on G exists;
- (b) S is a PT-set in G;
- (c) $\bigcap_{f \in \mathcal{F}} SP_{n \in \omega} A_n(f) = \{e\}$, where \mathcal{F} denotes the set of all mappings f from $\omega \times I \times G$ to ω such that f(k, i, g) < f(k + 1, i, g) for arbitrary $k \in \omega, i \in I$ and $g \in G$;

$$A_n(f) = \bigcup_{i \in I} \bigcup_{g \in G} g^{-1} A^i_{f(n,i,g)} g$$

for every $n \in \omega$; and

$$A_m^i = \{e\} \cup \{x_n^i : n \ge m\}$$

for every $m \in \omega$ and $i \in I$.

Moreover, if one of the statements (a), (b) or (c) holds, then the family $\{SP_{n\in\omega}A_n(f): f\in\mathcal{F}\}\$ is a base at the identity e in (G,τ_S) .

Proof. (a) \Rightarrow (b). This is obvious by Definition 2.3.

(b) \Rightarrow (c). The set S being a PT-set in G, there is a T_1 paratopological group topology τ' on G in which all sequences of S converge to the identity e. It suffices to prove that for every open neighborhood U of ein (G, τ') , there exists a mapping $f \in \mathcal{F}$ such that $SP_{n \in \omega} A_n(f) \subset U$. At first, by Lemma 2.1, there exists a sequence $\{V_n\}_{n \in \omega}$ consisting of neighborhoods of e in (G, τ') such that $SP_{n \in \omega} V_n \subset U$. Let $k \in \omega$ be arbitrary. For every $i \in I$ and $g \in G$, since the sequence S_i converges to e in (G, τ') , we may choose f(k, i, g)such that $g^{-1}x_n^i g \in V_k$ when $n \geq f(k, i, g)$, whence $A_k(f) \subset V_k$. Without loss of generality, we may assume that f(k, i, g) < f(k+1, i, g) for any $k \in \omega, i \in I$, and $g \in G$. Thus $f \in \mathcal{F}$ and $SP_{n \in \omega} A_n(f) \subset SP_{n \in \omega} V_n \subset U$. (c) \Rightarrow (a).

Claim. The family $\mathcal{N} = \{SP_{n \in \omega}A_n(f) : f \in \mathcal{F}\}\$ is a base at the identity e for some T_1 paratopological group topology σ on G.

In order to prove the above claim, we have to check that \mathcal{N} satisfies conditions (1), (2), (3) and (4) in Lemma 2.2.

(1) Let $SP_{n\in\omega}A_n(f_1), SP_{n\in\omega}A_n(f_2)\in\mathcal{N}$. For every $k\in\omega, i\in I$ and $g\in G$, let

$$f(k, i, g) = f_1(k, i, g) + f_2(k, i, g).$$

Then $f \in \mathcal{F}$,

$$A^{i}_{f(k,i,g)} \subset A^{i}_{f_{1}(k,i,g)} \cap A^{i}_{f_{2}(k,i,g)}$$

and so

$$A_k(f) \subset A_k(f_1) \cap A_k(f_1)$$

Hence,

$$SP_{n\in\omega}A_n(f)\subset SP_{n\in\omega}A_n(f_1)\cap SP_{n\in\omega}A_n(f_2).$$

(2) Let $SP_{n\in\omega}A_n(f)\in\mathcal{N}$. For every $k\in\omega,i\in I$ and $g\in G$, let

$$\psi(k, i, g) = f(2k+1, i, g).$$

Obviously, $\psi \in \mathcal{F}$ and $A_k(\psi) = A_{2k+1}(f)$ for every $k \in \omega$. Let $k, l \in \omega$. Suppose $\alpha \in \mathbb{S}_{k+1}$ and $\beta \in \mathbb{S}_{l+1}$. **Case 1.** Assume that $k \leq l$. Put

$$\begin{aligned} \sigma(r) &= 2\alpha(r) + 1, \text{ if } 0 \le r \le k; \\ \sigma(k+1+q) &= 2\beta(q), \text{ if } 0 \le \beta(q) \le k \text{ and } 0 \le q \le l; \\ \sigma(k+1+q) &= k+1+\beta(q), \text{ if } k < \beta(q) \le l \text{ and } 0 \le q \le l. \end{aligned}$$

Then $\sigma \in \mathbb{S}_{k+l+2}$. Since $A_{m+1}(f) \subset A_m(f)$ for every $m \in \omega$, we have

$$\begin{aligned} A_{\alpha(r)}(\psi) &= A_{2\alpha(r)+1}(f) = A_{\sigma(r)}(f), \text{ if } 0 \le r \le k; \\ A_{\beta(q)}(\psi) &= A_{2\beta(q)+1}(f) \subset A_{2\beta(q)}(f) = A_{\sigma(k+1+q)}(f), \text{ if } 0 \le \beta(q) \le k \text{ and } 0 \le q \le l; \\ A_{\beta(q)}(\psi) &= A_{2\beta(q)+1}(f) \subset A_{k+1+\beta(q)}(f) = A_{\sigma(k+1+q)}(f), \text{ if } k < \beta(q) \le l \text{ and } 0 \le q \le l. \end{aligned}$$

Hence,

$$A_{\alpha(0)}(\psi)\cdots A_{\alpha(k)}(\psi)A_{\beta(0)}(\psi)\cdots A_{\beta(l)}(\psi) \subset A_{\sigma(0)}(f)\cdots A_{\sigma(k+l+1)}(f) \subset SP_{n\in\omega}A_n(f).$$

Thus,

$$SP_{n\in\omega}A_n(\psi)SP_{n\in\omega}A_n(\psi)\subset SP_{n\in\omega}A_n(f).$$

Case 2. Assume that k > l. Put

$$\begin{aligned} \sigma(r) &= 2\alpha(r) + 1, \text{ if } 0 \leq \alpha(r) \leq l \text{ and } 0 \leq r \leq k; \\ \sigma(r) &= \alpha(r) + l + 1, \text{ if } l < \alpha(r) \leq k \text{ and } 0 \leq r \leq k; \\ \sigma(k+1+q) &= 2\beta(q), \text{ if } 0 \leq q \leq l. \end{aligned}$$

Then $\sigma \in \mathbb{S}_{k+l+2}$. Since $A_{m+1}(f) \subset A_m(f)$ for every $m \in \omega$, we have

$$\begin{aligned} A_{\alpha(r)}(\psi) &= A_{2\alpha(r)+1}(f) = A_{\sigma(r)}(f), \text{ if } 0 \le \alpha(r) \le l \text{ and } 0 \le r \le k; \\ A_{\alpha(r)}(\psi) &= A_{2\alpha(r)+1}(f) \subset A_{\alpha(r)+l+1}(f) = A_{\sigma(r)}(f), \text{ if } l < \alpha(r) \le k \text{ and } 0 \le r \le k; \\ A_{\beta(q)}(\psi) &= A_{2\beta(q)+1}(f) \subset A_{2\beta(q)}(f) = A_{\sigma(k+1+q)}(f), \text{ if } 0 \le q \le l. \end{aligned}$$

Hence,

$$A_{\alpha(0)}(\psi)\cdots A_{\alpha(k)}(\psi)A_{\beta(0)}(\psi)\cdots A_{\beta(l)}(\psi) \subset A_{\sigma(0)}(f)\cdots A_{\sigma(k+l+1)}(f) \subset SP_{n\in\omega}A_n(f).$$

Thus,

$$SP_{n\in\omega}A_n(\psi)SP_{n\in\omega}A_n(\psi)\subset SP_{n\in\omega}A_n(f).$$

(3) Let $SP_{n\in\omega}A_n(f)\in\mathcal{N}$ and $x\in SP_{n\in\omega}A_n(f)$. Let

$$k = \min\{n \in \omega : x \in \bigcup_{\sigma \in \mathbb{S}_{n+1}} A_{\sigma(0)}(f) A_{\sigma(1)}(f) \cdots A_{\sigma(n)}(f)\}.$$

Then $x \in A_{\alpha(0)}(f) \cdots A_{\alpha(k)}(f)$ for some $\alpha \in \mathbb{S}_{k+1}$. For every $k \in \omega, i \in I$ and $g \in G$, put

$$\phi(n, i, g) = f(k + 1 + n, i, g)$$

Clearly, $\phi \in \mathcal{F}$. Let $l \in \omega$ and $\beta \in \mathbb{S}_{l+1}$ be arbitrary. Put

$$\begin{split} &\sigma(r)=\alpha(r), \text{ if } 0\leq r\leq k;\\ &\sigma(k+1+r)=k+1+\beta(r), \text{ if } 0\leq r\leq l. \end{split}$$

Then $\sigma \in \mathbb{S}_{k+l+2}$. For every $0 \leq r \leq l$, we have

$$A_{\beta(r)}(\phi) = A_{k+1+\beta(r)}(f) = A_{\sigma(k+1+r)}(f).$$

 So

$$xA_{\beta(0)}(\phi)\cdots A_{\beta(l)}(\phi) \subset A_{\sigma(0)}(f)\cdots A_{\sigma(k+l+1)}(f) \subset SP_{n\in\omega}A_n(f)$$

Hence

$$xSP_{n\in\omega}A_n(\phi)\subset SP_{n\in\omega}A_n(f).$$

(4) Let $SP_{n\in\omega}A_n(f)\in\mathcal{N}$ and $h\in G$. For every $k\in\omega, i\in I$ and $g\in G$, let

$$\varphi(k, i, g) = f(k, i, gh).$$

Obviously, $\varphi \in \mathcal{F}$. For every $k \in \omega$ and $i \in I$, we have

$$\begin{split} \bigcup_{g \in G} g^{-1} A^i_{\varphi(k,i,g)} g &= \bigcup_{g \in G} g^{-1} A^i_{f(k,i,gh)} g \\ &= \bigcup_{g \in G} h(gh)^{-1} A^i_{f(k,i,gh)}(gh) h^{-1} \\ &\subset h(\bigcup_{g \in G} g^{-1} A^i_{f(k,i,g)}g) h^{-1}. \end{split}$$

So $A_k(\varphi) \subset hA_k(f)h^{-1}$, i.e., $h^{-1}A_k(\varphi)h \subset A_k(f)$ for every $k \in \omega$, whence

$$h^{-1}SP_{n\in\omega}A_n(\varphi)h\subset SP_{n\in\omega}A_n(f).$$

We have completed the proof of the above claim. Now, the topology σ on G is finer than an arbitrary paratopological group topology τ in which every sequence of S converges to e in (G, τ) . Indeed, suppose $O \in \tau$. For every $g \in O$, we have $e \in g^{-1}O \in \tau$. It follows from the proof of $(b) \Rightarrow (c)$ that there exists a mapping $f \in \mathcal{F}$ such that $SP_{n \in \omega} A_n(f) \subset g^{-1}O$, i.e., $gSP_{n \in \omega} A_n(f) \subset O$. Hence, $O \in \sigma$ and so $\tau \subset \sigma$. Obviously, since $A_k(f) \subset SP_{n \in \omega} A_n(f)$ for every $k \in \omega$ and $f \in \mathcal{F}$, every sequence of S converges to e in (G, σ) . Finally, according to Definition 2.3, $\sigma = \tau_S$, which shows that the implication $(c) \Rightarrow (a)$ holds. \Box **Lemma 2.5.** Let $S = \{S_i : i \in I\}$ be a PT-set in a group G (hence, the topology τ_S exists on G by Theorem 2.4), where $S_i = \{x_n^i\}_{n \in \omega}$ for every $i \in I$, and let p be a homomorphism from (G, τ_S) to a paratopological group H. Then p is continuous if and only if the sequence $p(S_i) = \{p(x_n^i)\}_{n \in \omega}$ converges to the identity e_H in H for every $i \in I$.

Proof. Necessity is obvious.

Sufficiency. To prove that the homomorphism $p : (G, \tau_S) \to H$ is continuous, it suffices to prove the continuity of p at the identity e_G in (G, τ_S) according to [3, Proposition 1.3.4]. Let $e_H \in U$ with U open in H. By Lemma 2.1, there exists a sequence $\{V_n\}_{n \in \omega}$ consisting of neighborhoods of e_H in H such that $SP_{n \in \omega}V_n \subset U$. By Theorem 2.4, $\{SP_{n \in \omega}A_n(f) : f \in \mathcal{F}\}$ is a base at the identity e_G in (G, τ_S) .

Now, let $k \in \omega$ be arbitrary. Since $\{p(x_n^i)\}_{n \in \omega}$ converges to the identity e_H and

$$p(g^{-1}x_n^i g) = p(g)^{-1}p(x_n^i)p(g)$$

for every $g \in G$ and $i \in I$, $\{p(g^{-1}x_n^i g)\}_{n \in \omega}$ also converges to the identity e_H by the joint continuity of multiplication in paratopological groups. So we may construct an $f \in \mathcal{F}$ such that for every $g \in G$ and $i \in I$, $p(g^{-1}x_n^i g) \in V_k$ when $n \geq f(k, i, g)$, whence

$$p(A_k(f)) = p(\bigcup_{i \in I} \bigcup_{g \in G} g^{-1} A^i_{f(k,i,g)}g) \subset V_k.$$

Therefore we have

$$p(SP_{n\in\omega}A_n(f)) = p(\bigcup_{n\in\omega}\bigcup_{\sigma\in\mathbb{S}_{n+1}}A_{\sigma(0)}(f)\cdots A_{\sigma(n)}(f))$$
$$= \bigcup_{n\in\omega}\bigcup_{\sigma\in\mathbb{S}_{n+1}}p(A_{\sigma(0)}(f))\cdots p(A_{\sigma(n)}(f))$$
$$\subset \bigcup_{n\in\omega}\bigcup_{\sigma\in\mathbb{S}_{n+1}}V_{\sigma(0)}\cdots V_{\sigma(n)}$$
$$= SP_{n\in\omega}V_n \subset U.$$

Hence, p is continuous at the identity e_G in (G, τ_S) . \Box

Lemma 2.6. Let (G, τ) be a T_1 paratopological group and S be a set of sequences in G. Then the following are equivalent.

(1) $\tau = \tau_{\mathcal{S}};$

(2) For every homomorphism p from (G, τ) to a paratopological group H, p is continuous if and only if p(S) converges to the identity e_H in H for every $S \in S$.

Proof. (1) \Rightarrow (2). This holds by Lemma 2.5.

(2) \Rightarrow (1). Since the identity isomorphism $id_G : (G, \tau) \rightarrow (G, \tau)$ is continuous, $id_G(S)$ (namely, S) converges to the identity e_G in G for every $S \in S$. Thus S is a PT-set in G. It follows from the definition of τ_S that $\tau \subset \tau_S$. On the other hand, by hypothesis, the identity isomorphism $id_G : (G, \tau) \rightarrow (G, \tau_S)$ is also continuous, which shows $\tau_S \subset \tau$. Hence $\tau = \tau_S$. \Box

Theorem 2.7. (G, τ) is a T_1 s-paratopological group, i.e., every sequentially continuous homomorphism p from (G, τ) to a paratopological group H is continuous if and only if there exists a PT-set S in G such that $\tau = \tau_S$.

Proof. Necessity. Let

 $S = \{S : S \text{ is a sequence in } G \text{ converging to the identity } e_G \text{ in } (G, \tau) \}.$

Then $\tau = \tau_S$ according to Lemma 2.6.

Sufficiency directly follows from Lemma 2.6. \Box

Let us recall the definition of a quotient group. Let G be a paratopological group and H a closed invariant subgroup of G. Denote by G/H the set of all cosets of H in G. Endow G/H the quotient topology τ with respect to the canonical mapping $\pi: G \to G/H$ defined by $\pi(a) = aH$ for every $a \in G$, i.e.,

$$\tau = \{ O \subset G/H : \pi^{-1}(O) \text{ is open in } G \}$$

A natural multiplication in G/H is defined by the rule $xH \cdot yH = xyH$ for all $x, y \in G$. It is well known that this operation \cdot turns G/H with the quotient topology into a paratopological group called the *quotient* group of G with respect to H, and $\pi : G \to G/H$ is a continuous surjective open homomorphism [3].

Theorem 2.8. Let S be a PT-set in a group G, H be a closed invariant subgroup of (G, τ_S) and π be the canonical mapping from G onto the quotient group $(G, \tau_S)/H$. Then $\pi(S)$ is a PT-set in the abstract group G/H and the identity mapping

$$id_{G/H}: (G, \tau_{\mathcal{S}})/H \to (G/H, \tau_{\pi(\mathcal{S})})$$

is a topological isomorphism.

Proof. The canonical mapping π being a continuous surjective open homomorphism from (G, τ_S) onto the quotient group $(G, \tau_S)/H$, the set $\pi(S)$ is a *PT*-set in the abstract group G/H.

Denote by τ the topology on the quotient group $(G, \tau_S)/H$. By the definition of $\tau_{\pi(S)}$, obviously, $\tau \subset \tau_{\pi(S)}$. In order to prove the theorem, it suffices to show that $\tau_{\pi(S)} \subset \tau$. Assume that $W \in \tau_{\pi(S)}$. If $W \notin \tau$, then $\pi^{-1}(W) \notin \tau_S$. Let

$$\mathcal{B} = \{ U \cap \pi^{-1}(V) : U \in \tau_{\mathcal{S}}, V \in \tau_{\pi(\mathcal{S})} \}.$$

Hence, the topology σ generated by the base \mathcal{B} on the abstract group G is strictly finer than the topology $\tau_{\mathcal{S}}$, that is, $\sigma \supset \tau_{\mathcal{S}}$ and $\sigma \neq \tau_{\mathcal{S}}$. It is easy to see that every sequence of \mathcal{S} converges to the identity e in (G, σ) . This contradicts the definition of the topology $\tau_{\mathcal{S}}$ on G. Therefore, $W \in \tau$ and $\tau_{\pi(\mathcal{S})} \subset \tau$. \Box

3. The structure theorem of s-paratopological groups

In this section, we characterize *s*-paratopological groups making use of free paratopological groups and establish a structure theorem for *s*-paratopological groups.

A topological space X is called a Fréchet space or Fréchet–Urysohn space [7] if for every $A \subset X$ and every $x \in \overline{A}$, there exists a sequence $\{x_n\}_{n \in \omega}$ of points of A converging to x. Obviously, every Fréchet space is a sequential space. It was shown [7] that a topological space is sequential if and only if it is a quotient image of a metrizable space.

Definition 3.1. [1] Let κ be an infinite cardinal number. Put

$$X = \{x\} \cup \{x_{\alpha,n} : \alpha < \kappa, n \in \omega\},\$$

where the elements of X are mutually distinct. ω^{κ} denotes the set of all functions from κ to ω . For every $\alpha < \kappa$ and every $l, m \in \omega$, put $W(\alpha, m) = \{x_{\alpha,l} : l \geq m\}$. For every $\alpha < \kappa$ and every $n \in \omega$, let $\mathcal{B}(x_{\alpha,n}) = \{\{x_{\alpha,n}\}\}$. Let

$$\mathcal{B}(x) = \{\{x\} \cup \bigcup_{\alpha < \kappa} W(\alpha, f(\alpha)) : f \in \omega^{\kappa}\}.$$

The topological space X, generated by the neighborhood system $\{\mathcal{B}(z)\}_{z\in X}$, is called the fan space and denoted by S_{κ} .

It is not difficult to check that the space S_{κ} is a Fréchet space.

Now we can prove our main theorem.

Theorem 3.2. Let G be a non-discrete T_1 paratopological group. Then the following statements are equivalent.

- (1) G is an s-paratopological group.
- (2) G is topologically isomorphic to a quotient group of a free paratopological group on a metrizable space.
- (3) G is topologically isomorphic to a quotient group of a free paratopological group on a T_1 Fréchet space.
- (4) G is topologically isomorphic to a quotient group of a free paratopological group on a T_1 sequential space.

Proof. (1) \Rightarrow (3). Let (G, τ) be a non-discrete T_1 s-paratopological group. Here, a sequence $\{x_n\}_{n \in \omega}$ converging to the identity e_G in (G, τ) is said to be *non-trivial*, if $x_n \neq x_m$ for any two distinct $n, m \in \omega$ and $x_n \neq e_G$ for every $n \in \omega$. Put

 $\mathcal{S} = \{ S : S \text{ is a non-trivial sequence in } (G, \tau) \}.$

Since (G, τ) is a non-discrete T_1 s-paratopological group, it is easy to see that $S \neq \emptyset$. Clearly, $\tau \subset \tau_S$ by the definition of τ_S . On the other hand, (G, τ) being a T_1 s-paratopological group, the identity isomorphism $id_G : (G, \tau) \to (G, \tau_S)$ is continuous, whence $\tau_S \subset \tau$. So we have $\tau = \tau_S$.

Denote $S = \{S_i : i \in I\}$, where $|I| = \kappa$ and $S_i = \{x_n^i\}_{n \in \omega}$ for every $i \in I$. For every $i \in I$ and $n \in \omega$, let

$$y_n^i = (x_n^i, i), S_i' = \{y_n^i\}_{n \in \omega} \text{ and } \mathcal{S}' = \{S_i' : i \in I\}.$$

Let

$$X = \{\infty\} \cup \{y_n^i : i \in I, n \in \omega\}$$

be a copy of S_{κ} . Define a mapping

$$p: X \to (G, \tau)$$

such that

$$p(y_n^i) = x_n^i$$
 for every $i \in I, n \in \omega$, and $p(\infty) = e_G$

Then the mapping p is continuous. Indeed, it suffices to prove that p is continuous at the only non-isolated point $\infty \in X$. Because of $\tau = \tau_S$, according to Theorem 2.4, $\{SP_{n \in \omega}A_n(f) : f \in \mathcal{F}\}$ is a base at the identity e_G in (G, τ) . Let $e_G \in O$ with O open in (G, τ) . Then $SP_{n \in \omega}A_n(f) \subset O$ for some $f \in \mathcal{F}$. Put

$$\varphi: I \to \omega$$

such that for every $i \in I$, $\varphi(i) = f(0, i, e_G)$. Let

$$V_{\infty} = \{\infty\} \cup \bigcup_{i \in I} \{y_l^i : l \ge \varphi(i)\}$$

Then V_{∞} is an open neighborhood of ∞ in X and

$$p(V_{\infty}) \subset \bigcup_{i \in I} A^{i}_{f(0,i,e_G)} \subset A_0(f) \subset SP_{n \in \omega} A_n(f) \subset O.$$

Hence, p is continuous at the point $\infty \in X$.

Since $p: X \to (G, \tau)$ is continuous, we can extend p to a continuous homomorphism $\hat{p}: FP(X) \to (G, \tau)$ by Definition 1.1. Since p(X) = G, \hat{p} is an epimorphism. Now we shall prove that \hat{p} is an open homomorphism. It suffices to prove that for every open neighborhood U of the identity $e_{FP(X)}$ in FP(X), $\hat{p}(U)$ contains a neighborhood of e_G in (G, τ) . Indeed, by Lemma 2.1, there exists a sequence $\{V_n\}_{n\in\omega}$ consisting of neighborhoods of $e_{FP(X)}$ in FP(X) such that $SP_{n\in\omega}V_n \subset U$. Since $\infty V_n \cap X$ is a neighborhood of ∞ in X, there exists a sequence of functions $\{f_n\}_{n\in\omega}$ from I to ω such that for every $i \in I$, $n \in \omega$,

$$f_n(i) < f_{n+1}(i) \text{ and } \{\infty\} \cup \bigcup_{i \in I} \{y_l^i : l \ge f_n(i)\} \subset \infty V_n.$$

Obviously, for every $i \in I$ and $g \in G$, there exists $j(i,g) \in I$ such that $g^{-1}S_ig = S_{j(i,g)}$. Define a mapping

$$\psi: \omega \times I \times G \to \omega$$

such that for every $n \in \omega, i \in I$ and $g \in G$,

$$\psi(n, i, g) = f_n(j(i, g)).$$

Hence, for every $n \in \omega$,

$$\begin{aligned} A_n(\psi) &= \bigcup_{i \in I} \bigcup_{g \in G} g^{-1} A^i_{\psi(n,i,g)} g \\ &= \bigcup_{i \in I} \bigcup_{g \in G} \{e_G\} \cup \{g^{-1} x^i_l g : l \ge \psi(n,i,g)\} \\ &= \bigcup_{i \in I} \bigcup_{g \in G} \{e_G\} \cup \{g^{-1} x^i_l g : l \ge f_n(j(i,g))\} \\ &\subset p(\{\infty\} \cup \bigcup_{i \in I} \{y^i_l : l \ge f_n(i)\}) \\ &\subset \hat{p}(\infty V_n) = \hat{p}(V_n). \end{aligned}$$

Thus $SP_{n\in\omega}A_n(\psi) \subset SP_{n\in\omega}\hat{p}(V_n) \subset \hat{p}(U)$, which shows $\hat{p}: FP(X) \to (G,\tau)$ is a continuous open epimorphism. By the first isomorphism theorem for paratopological groups in [14] (see p. 42), (G,τ) is topologically isomorphic to a quotient group of FP(X).

 $(3) \Rightarrow (4)$. This is clear.

 $(4) \Rightarrow (1)$. At first, we prove that the free paratopological group FP(X) on a T_1 sequential space X is an s-paratopological group. Denote by σ and τ the topologies of FP(X) and X, respectively. Put

 $S = \{S : S \text{ is a sequence converging to the identity } e \text{ in } (FP(X), \sigma)\}.$

Obviously, S is a PT-set in $F_a(X)$ and $\sigma \subset \tau_S$ by the definition of τ_S . Further, $\tau = \sigma|_X \subset \tau_S|_X$. On the other hand, we have $\tau_S|_X \subset \tau$. Indeed, suppose $U \in \tau_S|_X$. If $U \notin \tau$, then $X \setminus U$ is not closed in (X, τ) . Since (X, τ) is a sequential space, there exists a sequence $\{x_n\}_{n \in \omega}$ of points of $X \setminus U$ converging to $x \in U$ in (X, τ) . Let $S = \{x_n x^{-1}\}_{n \in \omega}$. Then $S \in S$ and so S converges to the identity e in $(F_a(X), \tau_S)$, whence $\{x_n\}_{n \in \omega}$ converges to x in $(F_a(X), \tau_S)$. So $x \in X \setminus U$ by $U \in \tau_S|_X$. This is a contradiction. Hence, $\tau_S|_X = \tau$. By Remark 1.2, we have $\sigma \supset \tau_S$ and so $\sigma = \tau_S$. By Theorem 2.7, FP(X) is an s-paratopological group.

Finally, by Theorem 2.8, ${\cal G}$ is also an $s\mbox{-}{\rm paratopological}$ group.

 $(2) \Rightarrow (4)$. This is obvious.

 $(4) \Rightarrow (2)$. Again, by the first isomorphism theorem for paratopological groups in [14] (see p. 42), it suffices to prove that the free paratopological group on a sequential space is the image of the free paratopological group on a metrizable space under a continuous open homomorphism. Indeed, let Y be a sequential space. Then there exists a quotient onto mapping $q: M \to Y$, where M is a metrizable space. Then f admits an extension to the continuous open homomorphism $\hat{f}: FP(M) \to FP(Y)$ by [4, Lemma 4.7] or [13, Proposition 2.10], which completes the proof of $(4) \Rightarrow (2)$. \Box

Free Abelian paratopological groups were introduced in [17] analogously to free paratopological groups.

Definition 3.3. [17] Let X be a subspace of an Abelian paratopological group G. Suppose that

- (1) the set X generates G algebraically, that is, $\langle X \rangle = G$; and
- (2) every continuous mapping $f: X \to H$ of X to an arbitrary Abelian paratopological group H extends to a continuous homomorphism $\hat{f}: G \to H$.

Then G is called the Markov free Abelian paratopological group (briefly, free Abelian paratopological group) on X and is denoted by AP(X).

In a way similar to Theorem 3.2, we have the following Abelian case of it.

Theorem 3.4. Let G be a non-discrete T_1 Abelian paratopological group. Then the following statements are equivalent.

- (1) G is an s-paratopological group.
- (2) G is topologically isomorphic to a quotient group of a free Abelian paratopological group on a metrizable space.
- (3) G is topologically isomorphic to a quotient group of a free Abelian paratopological group on a T₁ Fréchet space.
- (4) G is topologically isomorphic to a quotient group of a free Abelian paratopological group on a T_1 sequential space.

We conclude this paper with a natural question.

Question 3.5. Does there exist an s-topological group which is not an s-paratopological group?

References

- [1] A. Arhangel'skiĭ, S. Franklin, Ordinal invariants for topological spaces, Mich. Math. J. 15 (1968) 313–320.
- [2] A. Arhangel'skii, W. Just, G. Plebanek, Sequential continuity on dyadic compacta and topological groups, Comment. Math. Univ. Carol. 37 (4) (1996) 775–790.
- [3] A. Arhangel'skiĭ, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press and World Scientific, 2008.
- [4] Z. Cai, S. Lin, A few generalized metric properties on free paratopological groups, Topol. Appl. 204 (2016) 90–102.

- [5] A. Elfard, P. Nickolas, On the topology of free paratopological groups, Bull. Lond. Math. Soc. 44 (6) (2012) 1103–1115.
- [6] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989, revised and completed edition.
- [7] S. Franklin, Spaces in which sequences suffice, Fundam. Math. 57 (1965) 107–115.
- [8] S. Gabriyelyan, Topologies on groups determined by sets of convergent sequences, J. Pure Appl. Algebra 217 (2013) 786–802.
- [9] M. Hušek, Sequentially continuous homomorphisms on products of topological groups, Topol. Appl. 70 (1996) 155–165.
- [10] J. Marin, S. Romaguera, A bitopological view of quasi-topological groups, Indian J. Pure Appl. Math. 27 (4) (1996) 393–405.
- [11] N. Noble, The continuity of functions on Cartesian products, Trans. Am. Math. Soc. 149 (1970) 187–198.
- [12] I. Protasov, E. Zelenyuk, Topologies on Groups Determined by Sequences, Math. Studies, Monograph Series, vol. 4, VNTL Publ., 1999.
- [13] N. Pyrch, O. Ravsky, On free paratopological groups, Mat. Stud. 25 (2006) 115–125.
- [14] O. Ravsky, Paratopological groups I, Mat. Stud. 16 (2001) 37-48.
- [15] O. Ravsky, Paratopological groups II, Mat. Stud. 17 (2002) 93-101.
- [16] D. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
- [17] S. Romaguera, M. Sanchis, M. Tkachenko, Free paratopological groups, Topol. Proc. 27 (2002) 1–28.
- [18] D. Shakhmatov, Convergence in the Presence of Algebraic Structure, Recent Progress in General Topology, vol. II, North-Holland, Amsterdam, 2002, pp. 463–484.
- [19] M. Tkachenko, More on convergent sequences in free topological groups, Topol. Appl. 160 (2013) 1206–1213.
- [20] M. Tkachenko, Paratopological and semitopological groups vs topological groups, in: K.P. Hart, J. van Mill, P. Simon (Eds.), Recent Progress in General Topology III, Papers from the Prague Topological Symp., Prague, 2011, Elsevier Science Publishers B.V., Amsterdam, 2014, pp. 803–859.