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A paratopological group G is called an s-paratopological group if every sequentially 
continuous homomorphism from G to a paratopological group is continuous. In 
this paper, the structure of s-paratopological groups is established in terms of free 
paratopological groups. Namely, if G is a non-discrete T1 paratopological group, 
then the following statements (1), (2), (3) and (4) are equivalent. (1) G is an 
s-paratopological group. (2) G is topologically isomorphic to a quotient group of a 
free paratopological group on a metrizable space. (3) G is topologically isomorphic 
to a quotient group of a free paratopological group on a T1 Fréchet space. (4) G is 
topologically isomorphic to a quotient group of a free paratopological group on a 
T1 sequential space.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A topological group is a group G with a topology such that the multiplication mapping of G ×G to G
is jointly continuous and the inverse mapping of G on itself is also continuous. The important notion of 
an s-topological group was introduced by N. Noble [11]. A topological group G is called an s-topological 
group if every sequentially continuous homomorphism from G to a topological group is continuous. Recall 
that a mapping f : X → Y between topological spaces X and Y is said to be sequentially continuous if 
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{f(xn)}n∈ω converges to f(x) in Y whenever a sequence {xn}n∈ω converges to x in X. In the past, some 
topologists were interested in investigating the properties of s-topological groups [2,8,9,11,18] etc.

A paratopological group is a group G with a topology such that the multiplication mapping of G ×G to 
G is jointly continuous. The absence of the continuity of inversion, the typical situation in paratopological 
groups, makes the study in this area very different from that in topological groups. Concerning a recent 
survey in the theory of paratopological groups, readers may consult [20]. Many publications have appeared 
in this field with regard to one important question, i.e., when are various results on topological groups valid 
for paratopological groups? As a generalization of free topological groups, S. Romaguera, M. Sanchis, and 
M. Tkachenko [17] introduced free paratopological groups on arbitrary topological spaces and discussed 
some of their topological properties. M. Tkachenko [20, p. 851] thought that free paratopological groups 
should be a very useful tool for the study of general paratopological groups.

Definition 1.1. [17] Let X be a subspace of a paratopological group G. Suppose that

(1) the set X generates G algebraically, that is, 〈X〉 = G; and
(2) every continuous mapping f : X → H of X to an arbitrary paratopological group H extends to a 

continuous homomorphism f̂ : G → H.

Then G is called the Markov free paratopological group (briefly, free paratopological group) on X and is 
denoted by FP (X).

Let Fa(X) denote the algebraic free group on a non-empty set X and e be the identity of Fa(X). The set 
X is called the free basis of Fa(X). Here are some details, for instance, see [3,16]. Every g ∈ Fa(X) distinct 
from e has the form g = xε1

1 · · ·xεn
n , where x1, ..., xn ∈ X and ε1, ..., εn = ±1. This expression or word for 

g is called reduced if it contains no pair of consecutive symbols of the form xx−1 or x−1x and we say in 
this case that the length l(g) of g equals to n. Every element g ∈ Fa(X) distinct from the identity e can be 
uniquely written in the form g = xr1

1 xr2
2 · · ·xrn

n , where n ≥ 1, ri ∈ Z \ {0}, xi ∈ X and xi �= xi+1 for every 
i = 1, ..., n − 1.

Remark 1.2. It is well known that the topology of FP (X) is the finest paratopological group topology on 
the abstract free group Fa(X) which induces the original topology on X [17].

Remark 1.3. If X is a T1-space, then FP (X) is also T1 and X−1 is a closed and discrete subspace of 
FP (X) [5].

In this paper, inspired by the concept of an s-topological group, we shall introduce s-paratopological 
groups and make the first step towards the study of them. Our main purpose is to characterize 
s-paratopological groups in terms of free paratopological groups, hence, to establish the structure of 
s-paratopological groups.

Definition 1.4. A paratopological group G is called an s-paratopological group if every sequentially continuous 
homomorphism from G to a paratopological group is continuous.

Let X be a topological space. A subset P of X is called a sequential neighborhood of x ∈ X in X if any 
sequence {xn}n∈N converging to x is eventually in P , i.e., {xn : n ≥ k0} ∪ {x} ⊂ P for some k0 ∈ N. P is 
called a sequentially open subset of X if P is a sequential neighborhood of every point of P in X. The space 
X is called a sequential space [7] if every sequentially open subset of X is open in X. It is not difficult to 
check that every sequential paratopological group is an s-paratopological group. Particularly, the Sorgenfrey 
line is an s-paratopological group. By [19, Corollary 2.5], it is easy to see that there exists a topological 
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group which is not an s-paratopological group. For example, the free topological group on βN is such an 
example.

• The symbol N denotes the set of all positive integers and ω = {0} ∪N. For every n ∈ N, Sn denotes the 
group of all permutations on the set {0, 1, ..., n − 1}.

• Let G be a group and {Am : m ≤ n} be a family of non-empty subsets of G for n ∈ N. A1 · · ·An denotes 
the set {a1 · · · an : am ∈ Am, m ≤ n}.

• Let G be a group and {An}n∈ω be a sequence of non-empty subsets of G. Following [12, Definition 3.1.3], 
we write

SPm≤nAm =
⋃

σ∈Sn+1

Aσ(0)Aσ(1) · · ·Aσ(n)

and

SPn∈ωAn =
⋃

n∈ω

SPm≤nAm =
⋃

n∈ω

⋃

σ∈Sn+1

Aσ(0)Aσ(1) · · ·Aσ(n).

For some unexplained terminology, readers may consult [3,6].

2. s-Paratopological groups and paratopologized sets

In this section, we introduce a crucial technical definition named paratopologized set to establish a few the-
orems required in order to describe the structure of s-paratopological groups in terms of free paratopological 
groups.

The following Lemma immediately follows from [12, Lemma 3.1.1].

Lemma 2.1. Let U be a neighborhood of the identity e in a paratopological group G. Then there exists a 
sequence {Vn}n∈ω consisting of neighborhoods of the identity e in G such that SPn∈ωVn ⊂ U .

The following description of a neighborhood base at the identity of a paratopological group is well known. 
For example, it appears in [10,14,15,17] etc.

Lemma 2.2. Let G be a paratopological group and N be a base at the identity e of G. Then the family N has 
the following four properties.

(1) for every U, V ∈ N , there exists W ∈ N with W ⊂ U ∩ V ;
(2) for every U ∈ N , there exists V ∈ N such that V V ⊂ U ;
(3) for every U ∈ N and g ∈ U , there exists V ∈ N such that gV ⊂ U ;
(4) for every U ∈ N and g ∈ G, there exists V ∈ N such that gV g−1 ⊂ U .

Conversely, if N is a family of subsets of an abstract group G containing the identity e of G and satisfying 
(1)–(4), then G admits the unique topology T that makes it a paratopological group with N being a base 
at e. In addition, if {e} =

⋂
N , then the topology T satisfies the T1-separation axiom.

Definition 2.3. Let G be an abstract group and S be a set of sequences in G. The set S is called a paratopol-
ogized set (briefly, PT -set) in G if there is a T1 paratopological group topology on G in which all sequences 
of S converge to the identity e of G. The finest T1 paratopological group topology on G with this property 
is denoted by τS .
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Here, we give a criterion for a set to be a PT -set in an abstract group.

Theorem 2.4. Let G be a group with identity e and S = {Si : i ∈ I} be a set of sequences in G, where 
Si = {xi

n}n∈ω for every i ∈ I. Then the following statements (a), (b), and (c) are equivalent.

(a) The topology τS on G exists;
(b) S is a PT -set in G;
(c)

⋂
f∈F SPn∈ωAn(f) = {e}, where F denotes the set of all mappings f from ω × I × G to ω such that 

f(k, i, g) < f(k + 1, i, g) for arbitrary k ∈ ω, i ∈ I and g ∈ G;

An(f) =
⋃

i∈I

⋃

g∈G

g−1Ai
f(n,i,g)g

for every n ∈ ω; and

Ai
m = {e} ∪ {xi

n : n ≥ m}

for every m ∈ ω and i ∈ I.

Moreover, if one of the statements (a), (b) or (c) holds, then the family {SPn∈ωAn(f) : f ∈ F} is a base 
at the identity e in (G, τS).

Proof. (a) ⇒ (b). This is obvious by Definition 2.3.
(b) ⇒ (c). The set S being a PT -set in G, there is a T1 paratopological group topology τ ′ on G in which 

all sequences of S converge to the identity e. It suffices to prove that for every open neighborhood U of e
in (G, τ ′), there exists a mapping f ∈ F such that SPn∈ωAn(f) ⊂ U . At first, by Lemma 2.1, there exists 
a sequence {Vn}n∈ω consisting of neighborhoods of e in (G, τ ′) such that SPn∈ωVn ⊂ U . Let k ∈ ω be 
arbitrary. For every i ∈ I and g ∈ G, since the sequence Si converges to e in (G, τ ′), we may choose f(k, i, g)
such that g−1xi

ng ∈ Vk when n ≥ f(k, i, g), whence Ak(f) ⊂ Vk. Without loss of generality, we may assume 
that f(k, i, g) < f(k+1, i, g) for any k ∈ ω, i ∈ I, and g ∈ G. Thus f ∈ F and SPn∈ωAn(f) ⊂ SPn∈ωVn ⊂ U .

(c) ⇒ (a).

Claim. The family N = {SPn∈ωAn(f) : f ∈ F} is a base at the identity e for some T1 paratopological group 
topology σ on G.

In order to prove the above claim, we have to check that N satisfies conditions (1), (2), (3) and (4) in 
Lemma 2.2.

(1) Let SPn∈ωAn(f1), SPn∈ωAn(f2) ∈ N . For every k ∈ ω, i ∈ I and g ∈ G, let

f(k, i, g) = f1(k, i, g) + f2(k, i, g).

Then f ∈ F ,

Ai
f(k,i,g) ⊂ Ai

f1(k,i,g) ∩Ai
f2(k,i,g)

and so

Ak(f) ⊂ Ak(f1) ∩Ak(f1).

Hence,
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SPn∈ωAn(f) ⊂ SPn∈ωAn(f1) ∩ SPn∈ωAn(f2).

(2) Let SPn∈ωAn(f) ∈ N . For every k ∈ ω, i ∈ I and g ∈ G, let

ψ(k, i, g) = f(2k + 1, i, g).

Obviously, ψ ∈ F and Ak(ψ) = A2k+1(f) for every k ∈ ω. Let k, l ∈ ω. Suppose α ∈ Sk+1 and β ∈ Sl+1.
Case 1. Assume that k ≤ l. Put

σ(r) = 2α(r) + 1, if 0 ≤ r ≤ k;

σ(k + 1 + q) = 2β(q), if 0 ≤ β(q) ≤ k and 0 ≤ q ≤ l;

σ(k + 1 + q) = k + 1 + β(q), if k < β(q) ≤ l and 0 ≤ q ≤ l.

Then σ ∈ Sk+l+2. Since Am+1(f) ⊂ Am(f) for every m ∈ ω, we have

Aα(r)(ψ) = A2α(r)+1(f) = Aσ(r)(f), if 0 ≤ r ≤ k;

Aβ(q)(ψ) = A2β(q)+1(f) ⊂ A2β(q)(f) = Aσ(k+1+q)(f), if 0 ≤ β(q) ≤ k and 0 ≤ q ≤ l;

Aβ(q)(ψ) = A2β(q)+1(f) ⊂ Ak+1+β(q)(f) = Aσ(k+1+q)(f), if k < β(q) ≤ l and 0 ≤ q ≤ l.

Hence,

Aα(0)(ψ) · · ·Aα(k)(ψ)Aβ(0)(ψ) · · ·Aβ(l)(ψ) ⊂ Aσ(0)(f) · · ·Aσ(k+l+1)(f) ⊂ SPn∈ωAn(f).

Thus,

SPn∈ωAn(ψ)SPn∈ωAn(ψ) ⊂ SPn∈ωAn(f).

Case 2. Assume that k > l. Put

σ(r) = 2α(r) + 1, if 0 ≤ α(r) ≤ l and 0 ≤ r ≤ k;

σ(r) = α(r) + l + 1, if l < α(r) ≤ k and 0 ≤ r ≤ k;

σ(k + 1 + q) = 2β(q), if 0 ≤ q ≤ l.

Then σ ∈ Sk+l+2. Since Am+1(f) ⊂ Am(f) for every m ∈ ω, we have

Aα(r)(ψ) = A2α(r)+1(f) = Aσ(r)(f), if 0 ≤ α(r) ≤ l and 0 ≤ r ≤ k;

Aα(r)(ψ) = A2α(r)+1(f) ⊂ Aα(r)+l+1(f) = Aσ(r)(f), if l < α(r) ≤ k and 0 ≤ r ≤ k;

Aβ(q)(ψ) = A2β(q)+1(f) ⊂ A2β(q)(f) = Aσ(k+1+q)(f), if 0 ≤ q ≤ l.

Hence,

Aα(0)(ψ) · · ·Aα(k)(ψ)Aβ(0)(ψ) · · ·Aβ(l)(ψ) ⊂ Aσ(0)(f) · · ·Aσ(k+l+1)(f) ⊂ SPn∈ωAn(f).

Thus,

SPn∈ωAn(ψ)SPn∈ωAn(ψ) ⊂ SPn∈ωAn(f).
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(3) Let SPn∈ωAn(f) ∈ N and x ∈ SPn∈ωAn(f). Let

k = min{n ∈ ω : x ∈
⋃

σ∈Sn+1

Aσ(0)(f)Aσ(1)(f) · · ·Aσ(n)(f)}.

Then x ∈ Aα(0)(f) · · ·Aα(k)(f) for some α ∈ Sk+1. For every k ∈ ω, i ∈ I and g ∈ G, put

φ(n, i, g) = f(k + 1 + n, i, g).

Clearly, φ ∈ F . Let l ∈ ω and β ∈ Sl+1 be arbitrary. Put

σ(r) = α(r), if 0 ≤ r ≤ k;

σ(k + 1 + r) = k + 1 + β(r), if 0 ≤ r ≤ l.

Then σ ∈ Sk+l+2. For every 0 ≤ r ≤ l, we have

Aβ(r)(φ) = Ak+1+β(r)(f) = Aσ(k+1+r)(f).

So

xAβ(0)(φ) · · ·Aβ(l)(φ) ⊂ Aσ(0)(f) · · ·Aσ(k+l+1)(f) ⊂ SPn∈ωAn(f).

Hence

xSPn∈ωAn(φ) ⊂ SPn∈ωAn(f).

(4) Let SPn∈ωAn(f) ∈ N and h ∈ G. For every k ∈ ω, i ∈ I and g ∈ G, let

ϕ(k, i, g) = f(k, i, gh).

Obviously, ϕ ∈ F . For every k ∈ ω and i ∈ I, we have
⋃

g∈G

g−1Ai
ϕ(k,i,g)g =

⋃

g∈G

g−1Ai
f(k,i,gh)g

=
⋃

g∈G

h(gh)−1Ai
f(k,i,gh)(gh)h−1

⊂ h(
⋃

g∈G

g−1Ai
f(k,i,g)g)h−1.

So Ak(ϕ) ⊂ hAk(f)h−1, i.e., h−1Ak(ϕ)h ⊂ Ak(f) for every k ∈ ω, whence

h−1SPn∈ωAn(ϕ)h ⊂ SPn∈ωAn(f).

We have completed the proof of the above claim. Now, the topology σ on G is finer than an arbitrary 
paratopological group topology τ in which every sequence of S converges to e in (G, τ). Indeed, suppose 
O ∈ τ . For every g ∈ O, we have e ∈ g−1O ∈ τ . It follows from the proof of (b) ⇒ (c) that there exists 
a mapping f ∈ F such that SPn∈ωAn(f) ⊂ g−1O, i.e., gSPn∈ωAn(f) ⊂ O. Hence, O ∈ σ and so τ ⊂ σ. 
Obviously, since Ak(f) ⊂ SPn∈ωAn(f) for every k ∈ ω and f ∈ F , every sequence of S converges to e in 
(G, σ). Finally, according to Definition 2.3, σ = τS , which shows that the implication (c) ⇒ (a) holds. �
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Lemma 2.5. Let S = {Si : i ∈ I} be a PT -set in a group G (hence, the topology τS exists on G by 
Theorem 2.4), where Si = {xi

n}n∈ω for every i ∈ I, and let p be a homomorphism from (G, τS) to a 
paratopological group H. Then p is continuous if and only if the sequence p(Si) = {p(xi

n)}n∈ω converges to 
the identity eH in H for every i ∈ I.

Proof. Necessity is obvious.
Sufficiency. To prove that the homomorphism p : (G, τS) → H is continuous, it suffices to prove the 

continuity of p at the identity eG in (G, τS) according to [3, Proposition 1.3.4]. Let eH ∈ U with U open 
in H. By Lemma 2.1, there exists a sequence {Vn}n∈ω consisting of neighborhoods of eH in H such that 
SPn∈ωVn ⊂ U . By Theorem 2.4, {SPn∈ωAn(f) : f ∈ F} is a base at the identity eG in (G, τS).

Now, let k ∈ ω be arbitrary. Since {p(xi
n)}n∈ω converges to the identity eH and

p(g−1xi
ng) = p(g)−1p(xi

n)p(g)

for every g ∈ G and i ∈ I, {p(g−1xi
ng)}n∈ω also converges to the identity eH by the joint continuity of 

multiplication in paratopological groups. So we may construct an f ∈ F such that for every g ∈ G and 
i ∈ I, p(g−1xi

ng) ∈ Vk when n ≥ f(k, i, g), whence

p(Ak(f)) = p(
⋃

i∈I

⋃

g∈G

g−1Ai
f(k,i,g)g) ⊂ Vk.

Therefore we have

p(SPn∈ωAn(f)) = p(
⋃

n∈ω

⋃

σ∈Sn+1

Aσ(0)(f) · · ·Aσ(n)(f))

=
⋃

n∈ω

⋃

σ∈Sn+1

p(Aσ(0)(f)) · · · p(Aσ(n)(f))

⊂
⋃

n∈ω

⋃

σ∈Sn+1

Vσ(0) · · ·Vσ(n)

= SPn∈ωVn ⊂ U.

Hence, p is continuous at the identity eG in (G, τS). �
Lemma 2.6. Let (G, τ) be a T1 paratopological group and S be a set of sequences in G. Then the following 
are equivalent.

(1) τ = τS ;
(2) For every homomorphism p from (G, τ) to a paratopological group H, p is continuous if and only if p(S)

converges to the identity eH in H for every S ∈ S.

Proof. (1) ⇒ (2). This holds by Lemma 2.5.
(2) ⇒ (1). Since the identity isomorphism idG : (G, τ) → (G, τ) is continuous, idG(S) (namely, S) 

converges to the identity eG in G for every S ∈ S. Thus S is a PT -set in G. It follows from the definition of 
τS that τ ⊂ τS . On the other hand, by hypothesis, the identity isomorphism idG : (G, τ) → (G, τS) is also 
continuous, which shows τS ⊂ τ . Hence τ = τS . �
Theorem 2.7. (G, τ) is a T1 s-paratopological group, i.e., every sequentially continuous homomorphism p
from (G, τ) to a paratopological group H is continuous if and only if there exists a PT -set S in G such that 
τ = τS .
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Proof. Necessity. Let

S = {S : S is a sequence in G converging to the identity eG in (G, τ)}.

Then τ = τS according to Lemma 2.6.
Sufficiency directly follows from Lemma 2.6. �
Let us recall the definition of a quotient group. Let G be a paratopological group and H a closed invariant 

subgroup of G. Denote by G/H the set of all cosets of H in G. Endow G/H the quotient topology τ with 
respect to the canonical mapping π : G → G/H defined by π(a) = aH for every a ∈ G, i.e.,

τ = {O ⊂ G/H : π−1(O) is open in G}.

A natural multiplication in G/H is defined by the rule xH · yH = xyH for all x, y ∈ G. It is well known 
that this operation · turns G/H with the quotient topology into a paratopological group called the quotient 
group of G with respect to H, and π : G → G/H is a continuous surjective open homomorphism [3].

Theorem 2.8. Let S be a PT -set in a group G, H be a closed invariant subgroup of (G, τS) and π be the 
canonical mapping from G onto the quotient group (G, τS)/H. Then π(S) is a PT -set in the abstract group 
G/H and the identity mapping

idG/H : (G, τS)/H → (G/H, τπ(S))

is a topological isomorphism.

Proof. The canonical mapping π being a continuous surjective open homomorphism from (G, τS) onto the 
quotient group (G, τS)/H, the set π(S) is a PT -set in the abstract group G/H.

Denote by τ the topology on the quotient group (G, τS)/H. By the definition of τπ(S), obviously, τ ⊂ τπ(S). 
In order to prove the theorem, it suffices to show that τπ(S) ⊂ τ . Assume that W ∈ τπ(S). If W /∈ τ , then 
π−1(W ) /∈ τS . Let

B = {U ∩ π−1(V ) : U ∈ τS , V ∈ τπ(S)}.

Hence, the topology σ generated by the base B on the abstract group G is strictly finer than the topology 
τS , that is, σ ⊃ τS and σ �= τS . It is easy to see that every sequence of S converges to the identity e in 
(G, σ). This contradicts the definition of the topology τS on G. Therefore, W ∈ τ and τπ(S) ⊂ τ . �
3. The structure theorem of s-paratopological groups

In this section, we characterize s-paratopological groups making use of free paratopological groups and 
establish a structure theorem for s-paratopological groups.

A topological space X is called a Fréchet space or Fréchet–Urysohn space [7] if for every A ⊂ X and every 
x ∈ A, there exists a sequence {xn}n∈ω of points of A converging to x. Obviously, every Fréchet space is a 
sequential space. It was shown [7] that a topological space is sequential if and only if it is a quotient image 
of a metrizable space.

Definition 3.1. [1] Let κ be an infinite cardinal number. Put

X = {x} ∪ {xα,n : α < κ, n ∈ ω},
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where the elements of X are mutually distinct. ωκ denotes the set of all functions from κ to ω. For every 
α < κ and every l, m ∈ ω, put W (α, m) = {xα,l : l ≥ m}. For every α < κ and every n ∈ ω, let 
B(xα,n) = {{xα,n}}. Let

B(x) = {{x} ∪
⋃

α<κ

W (α, f(α)) : f ∈ ωκ}.

The topological space X, generated by the neighborhood system {B(z)}z∈X , is called the fan space and 
denoted by Sκ.

It is not difficult to check that the space Sκ is a Fréchet space.
Now we can prove our main theorem.

Theorem 3.2. Let G be a non-discrete T1 paratopological group. Then the following statements are equivalent.

(1) G is an s-paratopological group.
(2) G is topologically isomorphic to a quotient group of a free paratopological group on a metrizable space.
(3) G is topologically isomorphic to a quotient group of a free paratopological group on a T1 Fréchet space.
(4) G is topologically isomorphic to a quotient group of a free paratopological group on a T1 sequential space.

Proof. (1) ⇒ (3). Let (G, τ) be a non-discrete T1 s-paratopological group. Here, a sequence {xn}n∈ω

converging to the identity eG in (G, τ) is said to be non-trivial, if xn �= xm for any two distinct n, m ∈ ω

and xn �= eG for every n ∈ ω. Put

S = {S : S is a non-trivial sequence in (G, τ)}.

Since (G, τ) is a non-discrete T1 s-paratopological group, it is easy to see that S �= ∅. Clearly, τ ⊂ τS by the 
definition of τS . On the other hand, (G, τ) being a T1 s-paratopological group, the identity isomorphism 
idG : (G, τ) → (G, τS) is continuous, whence τS ⊂ τ . So we have τ = τS .

Denote S = {Si : i ∈ I}, where |I| = κ and Si = {xi
n}n∈ω for every i ∈ I. For every i ∈ I and n ∈ ω, let

yin = (xi
n, i), S′

i = {yin}n∈ω and S ′ = {S′
i : i ∈ I}.

Let

X = {∞} ∪ {yin : i ∈ I, n ∈ ω}

be a copy of Sκ. Define a mapping

p : X → (G, τ)

such that

p(yin) = xi
n for every i ∈ I, n ∈ ω, and p(∞) = eG.

Then the mapping p is continuous. Indeed, it suffices to prove that p is continuous at the only non-isolated 
point ∞ ∈ X. Because of τ = τS , according to Theorem 2.4, {SPn∈ωAn(f) : f ∈ F} is a base at the identity 
eG in (G, τ). Let eG ∈ O with O open in (G, τ). Then SPn∈ωAn(f) ⊂ O for some f ∈ F . Put

ϕ : I → ω
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such that for every i ∈ I, ϕ(i) = f(0, i, eG). Let

V∞ = {∞} ∪
⋃

i∈I

{yil : l ≥ ϕ(i)}.

Then V∞ is an open neighborhood of ∞ in X and

p(V∞) ⊂
⋃

i∈I

Ai
f(0,i,eG) ⊂ A0(f) ⊂ SPn∈ωAn(f) ⊂ O.

Hence, p is continuous at the point ∞ ∈ X.
Since p : X → (G, τ) is continuous, we can extend p to a continuous homomorphism p̂ : FP (X) → (G, τ)

by Definition 1.1. Since p(X) = G, p̂ is an epimorphism. Now we shall prove that p̂ is an open homomorphism. 
It suffices to prove that for every open neighborhood U of the identity eFP (X) in FP (X), p̂(U) contains 
a neighborhood of eG in (G, τ). Indeed, by Lemma 2.1, there exists a sequence {Vn}n∈ω consisting of 
neighborhoods of eFP (X) in FP (X) such that SPn∈ωVn ⊂ U . Since ∞Vn ∩X is a neighborhood of ∞ in X, 
there exists a sequence of functions {fn}n∈ω from I to ω such that for every i ∈ I, n ∈ ω,

fn(i) < fn+1(i) and {∞} ∪
⋃

i∈I

{yil : l ≥ fn(i)} ⊂ ∞Vn.

Obviously, for every i ∈ I and g ∈ G, there exists j(i, g) ∈ I such that g−1Sig = Sj(i,g). Define a mapping

ψ : ω × I ×G → ω

such that for every n ∈ ω, i ∈ I and g ∈ G,

ψ(n, i, g) = fn(j(i, g)).

Hence, for every n ∈ ω,

An(ψ) =
⋃

i∈I

⋃

g∈G

g−1Ai
ψ(n,i,g)g

=
⋃

i∈I

⋃

g∈G

{eG} ∪ {g−1xi
lg : l ≥ ψ(n, i, g)}

=
⋃

i∈I

⋃

g∈G

{eG} ∪ {g−1xi
lg : l ≥ fn(j(i, g))}

⊂ p({∞} ∪
⋃

i∈I

{yil : l ≥ fn(i)})

⊂ p̂(∞Vn) = p̂(Vn).

Thus SPn∈ωAn(ψ) ⊂ SPn∈ωp̂(Vn) ⊂ p̂(U), which shows p̂ : FP (X) → (G, τ) is a continuous open epimor-
phism. By the first isomorphism theorem for paratopological groups in [14] (see p. 42), (G, τ) is topologically 
isomorphic to a quotient group of FP (X).

(3) ⇒ (4). This is clear.
(4) ⇒ (1). At first, we prove that the free paratopological group FP (X) on a T1 sequential space X is 

an s-paratopological group. Denote by σ and τ the topologies of FP (X) and X, respectively. Put

S = {S : S is a sequence converging to the identity e in (FP (X), σ)}.
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Obviously, S is a PT -set in Fa(X) and σ ⊂ τS by the definition of τS . Further, τ = σ|X ⊂ τS |X . On the 
other hand, we have τS |X ⊂ τ . Indeed, suppose U ∈ τS |X . If U /∈ τ , then X \ U is not closed in (X, τ). 
Since (X, τ) is a sequential space, there exists a sequence {xn}n∈ω of points of X \ U converging to x ∈ U

in (X, τ). Let S = {xnx
−1}n∈ω. Then S ∈ S and so S converges to the identity e in (Fa(X), τS), whence 

{xn}n∈ω converges to x in (Fa(X), τS). So x ∈ X \U by U ∈ τS |X . This is a contradiction. Hence, τS |X = τ . 
By Remark 1.2, we have σ ⊃ τS and so σ = τS . By Theorem 2.7, FP (X) is an s-paratopological group.

Finally, by Theorem 2.8, G is also an s-paratopological group.
(2) ⇒ (4). This is obvious.
(4) ⇒ (2). Again, by the first isomorphism theorem for paratopological groups in [14] (see p. 42), it suffices 

to prove that the free paratopological group on a sequential space is the image of the free paratopological 
group on a metrizable space under a continuous open homomorphism. Indeed, let Y be a sequential space. 
Then there exists a quotient onto mapping q : M → Y , where M is a metrizable space. Then f admits 
an extension to the continuous open homomorphism f̂ : FP (M) → FP (Y ) by [4, Lemma 4.7] or [13, 
Proposition 2.10], which completes the proof of (4) ⇒ (2). �

Free Abelian paratopological groups were introduced in [17] analogously to free paratopological groups.

Definition 3.3. [17] Let X be a subspace of an Abelian paratopological group G. Suppose that

(1) the set X generates G algebraically, that is, 〈X〉 = G; and
(2) every continuous mapping f : X → H of X to an arbitrary Abelian paratopological group H extends 

to a continuous homomorphism f̂ : G → H.

Then G is called the Markov free Abelian paratopological group (briefly, free Abelian paratopological group) 
on X and is denoted by AP (X).

In a way similar to Theorem 3.2, we have the following Abelian case of it.

Theorem 3.4. Let G be a non-discrete T1 Abelian paratopological group. Then the following statements are 
equivalent.

(1) G is an s-paratopological group.
(2) G is topologically isomorphic to a quotient group of a free Abelian paratopological group on a metrizable 

space.
(3) G is topologically isomorphic to a quotient group of a free Abelian paratopological group on a T1 Fréchet 

space.
(4) G is topologically isomorphic to a quotient group of a free Abelian paratopological group on a T1 sequen-

tial space.

We conclude this paper with a natural question.

Question 3.5. Does there exist an s-topological group which is not an s-paratopological group?
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