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Let F (X) be the free topological group on a Tychonoff space X, and Fn(X) the 
subspace of F (X) consisting of all words of reduced length at most n for each n ∈ N. 
In this paper conditions under which the subspace F4(X) of the free topological 
group F (X) on a generalized metric space X contains no closed copy of Sω are 
obtained and used to discuss countability axioms in free topological groups. It is 
proved that for a k-semistratifiable k-space X the subspace F4(X) is snf -countable 
if and only if X is compact or discrete; for a normal k- and ℵ-space X F4(X) is 
csf -countable if and only if X is an ℵ0-space or discrete; and for a k∗-metrizable 
space X F5(X) is a k-space and F4(X) is csf -countable if and only if X is a kω-space 
or discrete. Some results of K. Yamada, and F. Lin, C. Liu and J. Cao are improved.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The symbols F (X) and A(X) denote respectively the free topological group and the free Abelian topological 
group on a Tychonoff space X in the sense of Markov [25]. Free topological groups have become a powerful 
tool of investigation in the theory of topological groups that serve as a source of various examples and as 
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an instrument for proving new theorems [3]. We use G(X) to denote either F (X) or A(X). It is a natural 
question whether there is a topological property P of a space X which characterizes a topological property 
Q of G(X). For example, the question of on what space X the free topological group G(X) is a k-space 
has been studied by several topologists. It is a classic result that a space X is a kω-space if and only if so 
is the group G(X) [24]. Arhangel’skǐı, Okunev and Pestov [2] proved that the topological group F (X) on a 
metrizable space X is a k-space if and only if X is locally compact and separable or discrete.

Let N be the set of all positive integers. In what follows, for each n ∈ N Fn(X) and An(X) stand for the 
subset of F (X) and A(X) formed by all words whose length is less than or equal to n, respectively. Thus, 
any statement about Gn(X) applies to both Fn(X) and An(X). It is well known that if a space X is not 
discrete, then neither A(X) is first-countable nor F (X) is Fréchet–Urysohn (see [3, Theorem 7.1.20] and 
[13, Corollary 4.17]). However, Fn(X) and An(X) have a chance to be first-countable or Fréchet–Urysohn 
for a non-discrete space X. These facts motivate researchers to investigate the countability axioms of free 
topological groups in the following two directions [15]: one is to study some weak forms of countability axioms 
in F (X) or A(X) over certain classes of spaces X; another is to study some weak forms of countability axioms 
in Fn(X) or An(X) over certain classes of spaces X.

The set of all non-isolated points of a space X is denoted by NI(X) in this paper. Let X be a Tychonoff 
space. Denote by X−1 a copy of a space X and by e the identity of the free group G(X). The mapping 
in : (X ⊕ {e} ⊕X−1)n → Gn(X) is defined by in((x1, x2, · · · , xn)) = x1x2 · · ·xn for each n ∈ N.

K. Yamada [33–35] made a systematic and outstanding work in the two research directions over metrizable 
spaces. The following results were obtained.

Theorem 1.1. ([33,34]) The following are equivalent for a metrizable space X:

(1) An(X) is metrizable for each n ∈ N;
(2) A3(X) is Fréchet–Urysohn;
(3) F3(X) is metrizable;
(4) G2(X) is first-countable;
(5) i2 is a closed mapping;
(6) NI(X) is compact.

Theorem 1.2. ([33,34]) The following are equivalent for a metrizable space X:

(1) Fn(X) is metrizable for each n ∈ N;
(2) F5(X) is Fréchet–Urysohn;
(3) F4(X) is first-countable;
(4) in is a closed mapping for each n ∈ N;
(5) i4 is a closed mapping;
(6) X is compact or discrete.

Theorem 1.3. ([35]) The following are equivalent for a metrizable space X:

(1) F (X) is a k-space;
(2) Fn(X) is a k-space for each n ∈ N;
(3) X is locally compact separable or discrete.

These results are beautiful, but slightly incomplete, which leaves a space for further research. For example, 
when, in terms of the space X, is the subspace F4(X) or F3(X) Fréchet–Urysohn? Is the mapping i3 closed? 
Is Fn(X) a k-space for some k ∈ N? Recently, F. Lin, C. Liu et al. [12,13,15] attempted to extend Yamada’s 
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results to generalized metric spaces and study weak forms of countability axioms in F (X) and A(X) over 
generalized metric spaces. For example, the following results were proved.

Theorem 1.4. ([13]) Let X be a paracompact space with a point-countable k-network. Then F5(X) is Fréchet–
Urysohn if and only if X is compact or discrete.

Theorem 1.5. ([12]) The following are equivalent for a k∗-metrizable μ-space X:

(1) F (X) is a k-space;
(2) F10(X) is a k-space;
(3) X is a kω-space or discrete.

Theorem 1.6. ([15]) The following are equivalent for a k-space X with a regular Gδ-diagonal:

(1) Fn(X) is metrizable for each n ∈ N;
(2) F4(X) is an snf -countable space;
(3) X is compact or discrete.

Theorem 1.7. ([15]) The following are equivalent for a Lašnev space X:

(1) F (X) is a csf -countable space;
(2) F4(X) is a csf-countable space;
(3) X is an ℵ0-space or discrete.

Recently, some researchers in topological algebra have been interested in the free topological groups 
over generalized metric spaces. Some questions are similar to those for free topological groups over metric 
spaces. For example, when, in terms of the space X, is the subspace G3(X) Fréchet–Urysohn? Is F3(X)
or F2(X) snf -countable? Is F3(X) csf -countable? These results and questions inspire us to study the 
countability axioms in free topological groups. We discussed the countable tightness and the k-property of 
free topological groups over generalized metric spaces in the above-mentioned first direction in [32]. The 
present paper contributes to characterizing some weak forms of countability axioms of the subspace Gn(X)
over certain classes of spaces X in the above-mentioned second direction; and we show that A. Arhangel’skǐı, 
K. Yamada and F. Lin’s results hold for a broader class of generalized metric spaces, including normal spaces 
with point-countable k-networks, k∗-metrizable spaces and k-semistratifiable spaces.

The paper is organized as follows. In Section 2, the necessary notation and terminology are introduced; 
in particular, weak forms of countability axioms, generalized metric spaces and free topological groups 
are defined. In Section 3, under certain assumptions, generalized metric spaces X such that the subspace 
G2(X) or F4(X) contains no closed copy of Sω are characterized. It is shown that the set NI(X) of all 
non-isolated points of a space X is countably compact for a sequential normal space X if G2(X) contains 
no closed copy of Sω (see Theorem 3.5). In Section 4 we show that the subspace F3(X) is Fréchet–Urysohn 
if and only if NI(X) is compact and X is first-countable for a normal space X with a point-countable 
k-network (see Theorem 4.3), and the subspace F4(X) is snf -countable if and only if X is compact or 
discrete for a k-semistratifiable k-space X (see Theorem 4.5). In Section 5, it is proved that the subspace 
F4(X) is csf -countable if and only if X is an ℵ0-space or discrete for a normal k-and ℵ-space X (see 
Theorem 5.2), and F5(X) is a k-space and F4(X) is csf -countable if and only if X is a kω-space or discrete 
for a k∗-metrizable space X (see Theorem 5.4). These facts refine results in [12,13,15,33,34].
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2. Notation and terminology

In this section we introduce the necessary notation and terminology; in particular, we define weak forms 
of countability axioms, generalized metric spaces and free topological groups.

Recall that a space X is a k-space provided that a subset C ⊆ X is closed in X if C ∩K is closed in K
for each compact subset K of X. A space X is a sequential space if for any non-closed set A of X there is a 
sequence in A converging to some point in X \A. A space X is Fréchet–Urysohn if for any set A ⊆ X and a 
point x ∈ A there is a sequence in A converging to x in X. A space X is called a kω-space if X =

⋃
i∈ω Xi, 

where each Xi is compact, and each set E ⊆ X such that every E∩Xi closed in Xi is closed in X. Obviously, 
every kω-space is a k-space. It is known that every first-countable space is a Fréchet–Urysohn space, every 
Fréchet–Urysohn space is a sequential space and every sequential space is a k-space.

Let Px be a family of subsets of a space X, where x ∈ X. The family Px is called a cs-network at x [11]
if, for every sequence {xn} converging to x and an arbitrary neighborhood U of x in X, there exist m ∈ N

and P ∈ Px such that {x} ∪{xn : n > m} ⊆ P ⊆ U . Px is called an sn-network [17] (or a sequential barrier
[18]) at x if the following conditions are satisfied: (1) every P ∈ Px is a sequential neighborhood of x in X, 
i.e., each sequence {xn} in X converging to x is eventually in P ; (2) if x ∈ U with U open in X, then there 
is P ∈ Px such that x ∈ P ⊆ U ; (3) if U, V ∈ Px, then W ⊆ U ∩ V for some W ∈ Px. A space X is called 
csf-countable [18, Definition 2.7] (resp., snf -countable [20, Definition 3], i.e., universally csf-countable [18, 
Definition 2.7]) if X has a countable cs-network (resp., snf -network) at each point x ∈ X. It is obvious 
that every first-countable space is snf -countable, and every snf -countable space is csf -countable.

Given an infinite cardinal κ, the fan space Sκ is the quotient space obtained by identifying all the limit 
points of the topological sum of κ many non-trivial convergent sequences. A space X is called an S2 space, 
i.e., Arens’ space, if X = {x} ∪{xn : n ∈ N} ∪{xmn : n, m ∈ N} and the topology is defined as follows: each 
xmn is isolated; a basic neighborhood of xn is {xn} ∪ {xnm : m > k} for some k ∈ N; a basic neighborhood 
of x is {x} ∪

⋃
n>k Vn for some k ∈ N, where Vn is a neighborhood of xn. It is easy to see that every fan 

space Sκ is a Fréchet–Urysohn space, Sω1 is not csf -countable (see [20, Remark 3]), Sω is csf -countable 
but not snf -countable, and S2 is sequential and snf -countable but not Fréchet–Urysohn.

Let P be a cover of a space X. The family P is a network for X [1] if, for each U open in X and x ∈ U , 
there is P ∈ P such that x ∈ P ⊆ U . P is called a k-network for X [29] if, for each U open in X and each 
compact set K ⊆ U , there is a finite subfamily P ′ ⊆ P such that K ⊆ ∪P ′ ⊆ U . A regular space X is called 
a σ-space [28] (resp. an ℵ-space [29]) if it has a σ-locally finite network (resp. a σ-locally finite k-network). 
A regular space X with a countable network (resp. a countable k-network) is called a cosmic space (resp. 
an ℵ0-space [26]).

We shall concern ourselves with three classes of generalized metric spaces: normal spaces with a point-
countable k-network, k∗-metrizable spaces and k-semistratifiable spaces. Let P be a family of subsets of a 
space X. P is called point-countable if every point of X only belongs to at most countably many elements 
of P. k∗-Metrizable spaces [4] are defined as the images of metric spaces under certain mappings; they can 
be characterized as regular spaces with a σ-compact-finite k-network (see [4, Theorem 6.4]). Recall that a 
family P of subsets of a space X is compact-finite (resp. compact-countable) if every compact subset of X
meets at most finitely (resp. countably) many P ∈ P. A regular space X is said to be a k-semistratifiable 
space [23] if there is an operator U assigning to each closed set F a sequence U(F ) = {U(n, F )}n∈N of open 
sets in X such that (1) 

⋂
n∈N

U(n, F ) = F ; (2) if D ⊆ F , then U(n, D) ⊆ U(n, F ) for each n ∈ N; (3) if K is 
compact in X and K ∩ F = ∅, then K ∩ U(m, F ) = ∅ for some m ∈ N. If, instead of the above conditions 
(1) and (3), the condition (1′) 

⋂
n∈N

U(n, F ) =
⋂

n∈N
U(n, F ) = F holds, then X is said to be a stratifiable 

space [5]. A space X is called a Lašnev space if X is a closed image of a metric space.
We summarize some relations between the above-mentioned generalized metric spaces as follows [4,9,19].
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metrizable spaces
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ℵ0-spaces
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Lašnev spaces

�

���

ℵ-spaces

�

���
k∗-metrizable spaces

�
compact-countable k-networks

cosmic spaces

�
stratifiable spaces � k-semi-stratifiable spaces � σ-spaces

Let X be a Tychonoff space. As an abstract group, F (X) (resp. A(X)) is the free (resp. free Abelian) 
group on X having the finest group topology among those inducing the original topology of X, so that every 
continuous map from X to an arbitrary (resp. Abelian) topological group G extends to a unique continuous 
homomorphism from F (X) (resp. A(X)) to G. We always use G(X) to denote topological groups F (X)
and A(X). For each n ∈ N, every Fn(X) contains a closed copy of Xn (see [3, Theorem 7.1.13]), and every 
Gn(X) is a closed subspace of G(X). For a subset Y of X, the symbol G(Y, X) denotes the subgroup of 
G(X) generated by Y . If Y is a closed subspace of X, the subgroup G(Y, X) is closed in G(X) (see [3, 
Theorem 7.4.5]). Denote by X−1 a copy of a space X and by e the identity of the free group G(X). The 
mapping in : (X ⊕ {e} ⊕X−1)n → Gn(X) is defined as in((x1, x2, · · · , xn)) = x1x2 · · ·xn for each n ∈ N. 
Clearly, each in is continuous and onto. The support of a reduced word g = xε1

1 xε2
2 · · ·xεn

n ∈ G(X), where 
εi = ±1 and xi ∈ X, is defined as the set supp(g) = {x1, x2, · · · , xn}. Given a subset K of G(X), we put

supp(K) =
⋃
g∈K

supp(g).

For notation and terminology not given here the reader is referred to [3,6,9].

3. When G2(X) or F4(X) contains no closed copy of Sω

In this section, we shall characterize, under certain additional assumptions, generalized metric spaces X
such that G2(X) or F4(X) contains no closed copy of Sω: this characterization plays an important role in 
Sections 4 and 5.

Firstly, we discuss when G2(X) contains no closed copy of Sω. A subspace Y of a space X is said to be 
C-embedded if every continuous real-valued function on Y has a continuous extension to X. A subspace Y
of X is said to be F -embedded if F (Y ) is a topological subgroup of F (X), i.e., F (Y ) ∼= F (Y, X).

Lemma 3.1. ([31, Theorem 2]) Suppose that Y is a Lindelöf subspace of a space X. Then Y is F -embedded 
in X if and only if Y is C-embedded in X.

Lemma 3.2. Let Y be the topological sum of countably many non-trivial convergent sequences together with 
their limits. Then G2(Y ) contains a closed copy of Sω.

Proof. Let Y =
⊕

n∈N
Cn, where each Cn is a non-trivial convergent sequence together with its limit point 

xn0. Put An = x−1
n0Cn for each n ∈ N. It is obvious that An is homeomorphic to Cn and An ∩ Am = {e}

whenever n 
= m ∈ N. Put A =
⋃

n∈N
An. Then A ⊆ G2(Y ). In the following, we shall prove that A is a 

closed copy of Sω in G2(Y ).
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Let E be a subset of A such that E ∩An is closed in An for each n ∈ N. Suppose K is any compact set 
in G2(Y ). From [3, Corollary 7.5.6] it follows that supp(K) is compact in Y . Hence, there is m ∈ N such 
that supp(K) ⊆

⋃
i≤m Ci, and, therefore, K ⊆ G(

⋃
i≤m Ci, Y ). It follows that

E ∩K = (E ∩A) ∩ (K ∩G(
⋃
i≤m

Ci, Y )) = E ∩K ∩
⋃
i≤m

Ai = K ∩
⋃
i≤m

(E ∩Ai).

Then E ∩K is closed in K. Observe that Y is a kω-space, so is G(Y ) by [3, Theorem 7.4.1]. Thus G2(Y ) is 
a k-space, so E is closed in G2(Y ). This implies that the subspace A is a closed copy of Sω in G2(Y ). �
Lemma 3.3. Suppose that a space X contains a closed copy of S2. Then G2(X) contains a closed copy of Sω.

Proof. Let B = {x} ∪{xn : n ∈ N} ∪{xnm : n, m ∈ N} be a closed copy of S2 in X, where the sequence {xn}
converges to x and the sequence {xnm}m∈N converges to xn for each n ∈ N. Put Cn = {x−1

n xnm : m ∈ N} for 
each n ∈ N. Then the sequence Cn converges to the identity e of G(X). We set C = {e} ∪

⋃
n∈N

Cn ⊆ G2(X). 
We shall prove that C is a closed copy of Sω in G2(X).

Firstly, we shall show that the set F = {x−1
n xnm ∈ C : m ≤ f(n), n ∈ N} is closed in C for any function 

f : N → N, which implies that C is a copy of Sω.
Suppose there exists y ∈ C ∩ F \ F . Put A = {xnm ∈ B : m ≤ f(n), n ∈ N}. Since B is closed 

in X, A is discrete and closed in X; thus A is discrete and closed in G(X) [3, Theorem 7.1.13], and 
xy /∈ A \ {xy}. Let U be an open neighborhood U of e in G(X) with Uxy ∩ (A \ {xy}) = ∅. There is 
an open neighborhood V of e such that V V ⊆ U . Then x−1V xy ∩ F 
= ∅, because y ∈ F . Since the 
sequence {xn} converges to x, there is n0 ∈ N such that xn ∈ V x whenever n > n0. Moreover, the set 
M1 = {n ∈ N : x−1V xy ∩ {x−1

n xnm : m ≤ f(n)} 
= ∅} is infinite. Thus there are j0 > n0 and m0 ≤ f(j0)
such that x−1

j0
xj0m0 ∈ x−1V xy ∩ F and xj0m0 
= xy. It follows from xj0 ∈ V x that

xj0m0 = xj0x
−1
j0

xj0m0 ∈ V xx−1V xy = V V xy ⊆ Uxy.

This implies that Uxy∩ (A \{xy}) 
= ∅. This is a contradiction, which shows that the set C is a copy of Sω.
Secondly, if C is not closed in G2(X), then there exists a point z ∈ C \C. Since B is closed in G(X) and 

xz 
= x, there is an open neighborhood O of e such that

|{n ∈ N : Oxz ∩ {xnm : m ∈ N} 
= ∅}| ≤ 1.

Take an open neighborhood W of e such that W 2 ⊆ O. There is i0 ∈ N such that xn ∈ Wx whenever 
n > i0. Since z ∈ C \C, the set M2 = {n ∈ N : n > i0, x−1Wxz ∩Cn 
= ∅} is infinite. Let n ∈ M2 and take 
m ∈ N such that x−1

n xnm ∈ x−1Wxz. Then

xnm ∈ xnx
−1Wxz ⊆ Wxx−1Wxz = WWxz ⊆ Oxz.

This implies that the set {n ∈ N : Oxz ∩ {xnm : m ∈ N} 
= ∅} is infinite. This is a contradiction, and C is 
closed in G2(X). �
Lemma 3.4. Suppose one of the following conditions is satisfied for a space X:

(a) X has a point-countable k-network;
(b) X is a σ-space.

Then
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(1) every countably compact subset of X is compact metrizable;
(2) X is sequential if X is a k-space.

Proof. Let X be a space with a point-countable k-network (resp. a σ-space).
(1) Clearly, the subspace A has also a point-countable k-network (resp. is a σ-space). Since A is a 

countably compact subset of X, by [10, Theorem 4.1] (resp. [9, Corollary 4.7]), A is compact metrizable.
(2) If X is a k-space, then X is a quotient image of a topological sum of compact subsets of X [27, 

Theorem 6.E.3(c)]. By (1), X is a quotient image of a metrizable space; hence X is a sequential space [27, 
Theorem 6.D.2]. �
Theorem 3.5. If one of the following conditions is satisfied and G2(X) contains no closed copy of Sω, then 
NI(X) is countably compact.

(a) X is a sequential normal space.
(b) X is a k∗-metrizable k-space.
(c) X is a k-semistratifiable k-space.

Proof. (a) Suppose X is a sequential normal space and NI(X) is not countably compact. Choose an 
infinite discrete closed set {xn0 : n ∈ ω} ⊆ NI(X). There are a disjoint family {An} such that each An is a 
non-trivial convergent sequence in X together with its limit point xn0 and a discrete family {Un} of open 
sets in X such that each An ⊆ Un. Clearly, the subspace 

⋃
n∈ω An of X is homeomorphic to 

⊕
n∈ω An and 

closed in X. Hence 
⋃

n∈ω An is C-embedded in X and therefore, by Lemmas 3.1 and 3.2, G2(X) contains 
a closed copy of Sω. This is a contradiction; thus NI(X) is not countably compact.

Next, we consider conditions (b) and (c). To complete the proof, by Lemma 3.4 and already proved 
assertion (a), we only need to show that the space X is normal. By Lemma 3.3, X contains no closed copy 
of S2.

(b) Suppose X is a k∗-metrizable k-space. From the fact that every sequential space with a point-countable 
k-network containing no closed copy of S2 is a Fréchet–Urysohn space [18, Theorem 2.12] it follows that X
is Fréchet–Urysohn and, therefore, X is a Lašnev space by the fact that every Fréchet–Urysohn space with 
a σ-compact-finite k-network is a Lašnev space [21]. Thus X is a normal space.

(c) Suppose X is a k-semistratifiable k-space. Observe the fact that (1) every regular sequential space 
with every point being a Gδ-set is Fréchet–Urysohn if it contains no closed copy of S2 [18, Lemma 2.5]; and 
(2) every Fréchet–Urysohn k-semistratifiable space is stratifiable [8, Theorem 1]. Therefore the space X is 
stratifiable, and thus it is normal. �

Since every weakly first-countable space is snf -countable (= universally csf -countable space [18, Defi-
nition 2.7 and Lemma 3.12]), and every snf -countable space contains no closed copy of Sω [18, Theorem 
3.13], Theorem 3.5 improves Theorem 1.1, [12, Theorem 4.10] and [15, Theorem 3.7].

Secondly, we consider when the subspace F4(X) contains no closed copy of Sω.

Lemma 3.6. ([31, Theorem 1]) Suppose that Y is a closed subspace of a metrizable space X. Then the free 
topological group F (Y ) is a topological subgroup of F (X).

A subset A of a space X is called sequentially closed if A contains the limits of all sequences in A convergent 
in X. It is obvious that a space X is sequential if and only if every sequentially closed subset of X is closed. 
Let C ⊕ D be the topological sum of topological spaces C and D, where C is a non-trivial convergent 
sequence together with its limit point x0 and D is a discrete space, and consider the free topological group 
F (C ⊕D) on C ⊕D. Put Ca = {ax0x

−1a−1 : x ∈ C} ⊂ F (C ⊕D) for each a ∈ D. It is easy to check that 
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each Ca is homeomorphic to C and Ca∩Cb = {e} for any distinct elements a, b ∈ D. Put SC⊕D =
⋃

a∈D Ca. 
It is clear that SC⊕D ⊆ F4(C ⊕D).

Lemma 3.7. Let C be a non-trivial convergent sequence together with its limit point and D a discrete space. 
Then

(1) SC⊕D is a closed copy of Sω in F4(C ⊕D) if D is countably infinite;
(2) SC⊕D is non-csf-countable and sequentially closed in F4(C ⊕D) if D is uncountable.

Proof. Firstly, we show the following fact (∗): A countable subset Y of SC⊕D is closed in F (C⊕D) if Y ∩Ca

is finite for each a ∈ D.
Without loss of generality, we can assume that Y is infinite. Put G = supp(Y ) ∪{x0}, where x0 is the limit 

point of C. Then G is a locally compact closed subspace in C⊕D. Hence, F (G) is a k-space by Theorem 1.3
and, therefore, is a sequential space, because F (G) is countable. Since C ⊕D is metrizable, it follows from 
Lemma 3.6 that F (G, C⊕D) is a closed copy of F (G). Thus F (G, C⊕D) is a closed and sequential subspace 
of F (C ⊕D). To show that Y is closed in F (C ⊕D) it is enough to show that Y is closed in F (G, C ⊕D). 
If not, then there is a non-trivial sequence l ⊆ Y converging to some point y ∈ F (G, C ⊕D) \ Y . Note that 
Y ∩Ca is finite for each a ∈ D, so supp(l) ∩D is an infinite closed discrete set in C ⊕D. However, from [3, 
Corollary 7.5.6] it follows that Q = supp(l ∪ {x0}) is compact. On the other hand, Q contains the infinite 
discrete closed set supp(l) ∩D. This contradiction completes the proof of (∗).

According to (∗), SC⊕D is sequentially closed in F4(C ⊕D).
(1) Assume D is countable infinite. According to (∗), SC⊕D is a copy of Sω. Since C ⊕ D is a locally 

compact separable metrizable space, from Theorem 1.3 it follows that F (C⊕D) is a k-space. Since F (C⊕D)
is countable, F (C⊕D) is a σ-space; so F (C ⊕D) is a sequential space by Lemma 3.4. Thus SC⊕D is closed 
in F4(C ⊕D).

(2) Assume D is uncountable and SC⊕D is csf -countable. Let P be a countable cs-network at e in SC⊕D. 
Denoting

{P ∈ P : there are infinitely many a ∈ D such that P ∩ (Cα \ {e}) 
= ∅}

by {Pn}n∈N, we can inductively choose a subset {yn : n ∈ N} of SC⊕D such that yn ∈ Pn \ {e} and different 
yn belong to different Ca. Then {yn : n ∈ N} is a closed set in SC⊕D by (∗). Let

V = SC⊕D \ {yn : n ∈ N}, F = {P ∈ P : P ⊂ V }.

If P ∈ F , then P /∈ {Pn : n ∈ N}, so P only meets finitely many Ca \ {e}, and hence ∪F only meets 
countably many Ca\{e}. As a consequence, there is b ∈ D such that (Cb\{e}) ∩

⋃
F = ∅. Let V ∩(Cb\{e}) =

{cn : n ∈ N}. Then the sequence {cn} converges to e ∈ V , so there exists P ∈ F such that {cn} is eventually 
in P , and hence (Cb \ {e}) ∩

⋃
F 
= ∅, which is a contradiction. Therefore, SC⊕D is not csf -countable. �

Theorem 3.8. If one of the following conditions is satisfied, then F4(X) contains no closed copy of Sω if 
and only if X is countably compact or discrete.

(a) X is a sequential normal space.
(b) X is a k∗-metrizable k-space.
(c) X is a k-semistratifiable k-space.

Proof. If X is a k∗-metrizable k-space, by [4, Theorem 3.5(6) and Proposition 3.7], X is a sequential space 
in which every countably compact subset is compact metrizable. If X is a k-semistratifiable k-space, by 
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[16, Theorem 2.3], X is a σ-space; and by Lemma 3.4, X is a sequential space in which every countably 
compact subset is compact metrizable.

Sufficiency. Without loss of generality, we can assume that X is a countably compact sequential space. 
Then X is sequentially compact, and the spaces X⊕{e} ⊕X−1 and (X⊕{e} ⊕X−1)4 are also sequentially 
compact. Therefore, the subspace F4(X) is sequentially compact as the continuous image of (X⊕{e} ⊕X−1)4
under the mapping i4, and F4(X) contains no closed copy of Sω.

Necessity. Assume that a space X is neither countably compact nor discrete. We shall show that F4(X)
contains a closed copy of Sω if one of conditions (a), (b) and (c) is satisfied. Take an infinite countable 
discrete closed set D in X, which exists because X is not countably compact.

(1) Suppose X is a sequential normal space. Then there is a non-trivial convergent sequence C (including 
the limit point) in X with C ∩ D = ∅, because X is sequential. It is obvious that the set Y = C ∪ D is 
Lindelöf and C-embedded in X, because X is normal. Therefore, by Lemma 3.1, the subgroup F (Y, X) of 
F (X) generated by Y is topologically isomorphic to F (C ⊕D). Hence, F4(X) contains a closed copy of Sω

by Lemma 3.7.
(2) Suppose X is a k∗-metrizable k-space or k-semistratifiable k-space. Put I(X) = X \ NI(X). By 

Theorem 3.5 we can assume that NI(X) is countably compact and D ⊆ I(X). Since X is not countably 
compact, I(X) is not countably compact.

Case 1. I(X) is closed in X.

Clearly, X is homeomorphic to NI(X) ⊕ I(X), so X is metrizable. Choose a non-trivial sequence l ⊆
NI(X) with the limit point included. By Lemma 3.6, F (l ∪ D) ∼= F (l ⊕ D) ∼= F (l ∪ D, X). Hence F4(X)
contains a closed copy of Sω by Lemma 3.7.

Case 2. I(X) is not closed in X.

Since the space X is sequential, there is a non-trivial sequence l ⊆ I(X) converging to some point 
x ∈ NI(X). Put l = l∪{x}. Without loss of generality, we can assume that l∩D = ∅. Put F = X \ (l∪D)
and Z = X/F , and let p : X → Z be the natural quotient mapping. Observing that every point in l ∪D

is an isolated point in X and D is both closed and open in X, one can easily check that the space Z
is homeomorphic to D ⊕ l. The homomorphism p̃ : F (X) → F (Z) extending the quotient mapping p is 
open by [3, Corollary 7.1.9]. Clearly, p̃|F (l∪D,X) : F (l ∪D, X) → F (Z) is a topological isomorphism. Thus 
F (l ∪D, X) ∼= F (Z). Note that F (l ∪D, X) is closed in F (X). Hence F4(X) contains a closed copy of Sω

by Lemma 3.7. �
4. snf -Countability in free topological groups

In this section the Fréchet–Urysohn property and snf -countability of Fn(X) are discussed to improve 
Theorems 1.1, 1.2 and 1.4.

It is known that the subspace Fk+1(X) contains a copy of S2 if X is a sequential space and Fk(X)
contains a closed copy of Sω for some k ∈ N [13, Proposition 3.3], of which the proof was omitted. However, 
we have the following result.

Lemma 4.1. Suppose that X contains a non-trivial convergent sequence and Gk(X) contains a closed copy 
of Sω for some k ∈ N, then Gk+1(X) contains a closed copy of S2.

Proof. Suppose the space X contains a non-trivial sequence {xn} converging to x. Let B = {ynm : n, m ∈
N} ∪ {y} be a closed copy of Sω in Gk(X) such that every sequence {ynm}m∈N converges to y. Put C =
{xnynm : n, m ∈ N} ∪ {xny : n ∈ N} ∪ {xy}. Clearly, C ⊆ Gk+1(X).
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For any function f : N → N, we shall show that the set F = {xnynm : m ≤ f(n), n ∈ N} is closed in 
Gk+1(X), which implies that C is a closed copy of S2.

If not, there is a point a ∈ F \ F . Since B is a closed copy of Sω, there is an open neighborhood V of 
e such that V a ∩ {x−1ynm : m ≤ f(n), n ∈ N} \ {a} = ∅. On the other hand, take an open neighborhood 
U of e such that U2 ⊆ V . Then {x−1x−1

n : n > i} ⊆ U for some i ∈ N. Since Ua ∩ F is infinite, the set 
UUa ∩ {x−1ynm : m ⊆ f(n), n ∈ N} is infinite as well. This implies that V a ∩ {x−1ynm : m ≤ f(n), n ∈ N}
is infinite. This is a contradiction. �

According to Theorem 3.5 and Lemma 4.1 we obtain the following results, which improve Theorem 1.1.

Corollary 4.2. Let G3(X) be Fréchet–Urysohn. Then NI(X) is countably compact if one of the following 
conditions is satisfied.

(a) X is a normal space.
(b) X is a k∗-metrizable space.
(c) X is a k-semistratifiable space.

Theorem 4.3. Suppose one of the following conditions is satisfied for a k-space X:

(a) X is a normal space with a point-countable k-network;
(b) X is a k∗-metrizable space.

Then the following are equivalent:

(1) F3(X) is metrizable;
(2) F3(X) is Fréchet–Urysohn;
(3) F2(X) is snf-countable;
(4) NI(X) is compact and X is first-countable.

Proof. By Lemma 3.4 every countably compact subset of the space X is compact metrizable, and X is 
sequential.

Obviously, (1) implies (2) and (3).
(3) ⇒ (4). Since Sω is not snf -countable, it follows from Theorem 3.5 that NI(X) is countably compact, 

and hence NI(X) is compact. Since F2(X) is snf -countable, X is snf -countable; thus X contains no closed 
copy of Sω. On the other hand, by Lemma 3.3, X contains no closed copy of S2, and then X is first-countable 
[18, Corollary 3.9].

(2) ⇒ (4). It follows from Corollary 4.2 that NI(X) is countably compact, and NI(X) is compact. By 
Lemma 4.1, X contains no closed copy of Sω. Hence, it follows that X is first-countable from the fact that 
a Fréchet–Urysohn space with a point-countable k-network is first-countable if it contains no closed copy of 
Sω [30, Lemma 2.2].

(4) ⇒ (1). Since X is a first-countable space with a point-countable k-network, X has a point-countable 
base [9]. Since NI(X) is compact, X is metrizable [13, Lemma 4.3] and therefore, F3(X) is metrizable by 
Theorem 1.1. �

Next, we consider improvement of Theorems 1.2 and 1.4.

Lemma 4.4. ([33, Lemma 4.7]) If there are a non-closed subset Y and a closed discrete subset D of a space 
X with |Y | ≤ |D|, then the mapping in : (X ⊕ {e} ⊕X−1)n → Gn(X) is not closed for each n ≥ 3.
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Theorem 4.5. Suppose one of the following conditions is satisfied for a k-space X:

(a) X is a normal space in which every countably compact subset is metrizable;
(b) X is a k∗-metrizable space;
(c) X is a k-semistratifiable space.

Then the following are equivalent:

(1) Fn(X) is metrizable for each n ∈ N;
(2) F5(X) is Fréchet–Urysohn;
(3) F4(X) is snf -countable;
(4) X is compact or discrete;
(5) in is a closed mapping for some n ≥ 3;
(6) i3 is a closed mapping.

Proof. By Lemma 3.4 every countably compact subset of the space X is compact metrizable, and X is 
sequential.

Obviously, (6) ⇒ (5), and (4) ⇒ (1) ⇒ (2) and (3). (3) ⇒ (4) ⇒ (6) by Theorems 3.8 and 1.1. Next, we 
will prove that (5) ⇒ (4) and (2) ⇒ (4).

(5) ⇒ (4). Suppose the space X is neither compact nor discrete. Then X is a non-countably compact 
sequential space; thus X contains a countably infinite closed discrete set and a non-trivial convergent 
sequence. Therefore, in is not closed for each n ≥ 3 by Lemma 4.4.

(2) ⇒ (4). Suppose F5(X) is Fréchet–Urysohn. Then F5(X) contains no copy of S2. By Lemma 4.1, 
F4(X) contains no closed copy of Sω. By Theorem 3.8, X is countably compact or discrete, hence X is 
compact or discrete. �
5. csf -Countability in free topological groups

It is known that the group G(X) is csf -countable if and only if Gn(X) is csf -countable for each n ∈ N [15]. 
When, in terms of the space X, is the subspace Gn(X) csf -countable for some n ∈ N? In this section we 
shall characterize k∗-metrizable spaces X such that F4(X) is csf -countable.

Let T1 and T2 be two topologies on a set X such that T1 is finer than T2. If the space (X, T2) has a 
σ-discrete family of subsets which is a network for (X, T1), then the topology T2 is called an s-approximation
for T1 [3]. The space (X, T2) is a σ-space. A space X is ω1-compact if every closed discrete subset of X is 
countable.

Proposition 5.1. Let X be a non-discrete paracompact k- and σ-space. If F4(X) is csf -countable, then X
is a cosmic space.

Proof. It is enough to show that the space (X, T1) is a ω1-compact space, because every ω1-compact σ-space 
has a countable network.

Suppose that X is not ω1-compact. Since X is a k- and σ-space, X is a sequential space; thus X contains 
a non-trivial convergent sequence S (with the limit point included). Since X is a paracompact σ-space, 
T1 admits a metrizable s-approximation T2 on X [3, Theorem 7.6.6]. Put Y = (X, T2). Since (X, T1)
has no countable network, Y is not ω1-compact; thus Y contains an uncountable closed discrete subset D
with D ∩ S = ∅, so T1|S∪D = T2|S∪D, and the subspace S ∪ D is homeomorphic to S ⊕ D. Since Y is 
metrizable, according to Lemma 3.6 it follows that F (S ∪D, Y ) is a copy of F (S ⊕D). Thus, from the fact 
that the topology of the group F (T ) is the finest topological group topology on Fa(T ) that generates on T
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its original topology [3, Corollary 7.1.8] it follows that F (S ∪ D, X) is a copy of F (S ⊕ D) as well. Since 
F4(S⊕D) ⊆ F4(X) and F4(X) is csf -countable, F4(S⊕D) is csf -countable as well. This is a contradiction 
to Lemma 3.7. �

We have the following result, which improves Theorem 1.7. Let P be a family of subsets in a space X. 
The family P is called star-countable if each P ∈ P meets at most countably many elements of P. Every 
space with a star-countable k-network has a σ-compact-finite k-network [22, Lemma 2.3].

Theorem 5.2. Suppose one of the following conditions is satisfied for a space X:

(a) X is a normal k- and ℵ-space;
(b) X has a compact-countable k-network and X2 is a k-space.

Then the following are equivalent:

(1) F (X) is csf -countable;
(2) F4(X) is csf -countable;
(3) X is an ℵ0-space or discrete;
(4) X is separable or discrete.

Proof. Firstly, we prove (b) ⇒ (a). Suppose X is a space with a compact-countable k-network and X2 is 
a k-space. It follows from [22, Lemmas 3.2 and 3.3] that X is either first-countable or a local kω-space. If 
X is first-countable, then X is metrizable and thus a paracompact ℵ-space. If X is a local kω-space, then 
X is a locally ω1-compact space having a compact-countable k-network P such that the closure of every 
element in P is σ-compact. Hence, X has a star-countable k-network; therefore X is a topological sum of 
ℵ0-spaces by [22, Theorem 2.13], and X is a paracompact ℵ-space.

Secondly, assume a space X satisfies condition (a). Let us show that (1) ⇔ (2) ⇔ (3) ⇔ (4). Obviously, 
(3) ⇒ (4), and (1) ⇒ (2). It is well known that every normal k- and ℵ-space is paracompact [7]. Without 
loss of generality, we can assume that X is a non-discrete paracompact k- and ℵ-space.

(4) ⇒ (1). Since X is paracompact and separable, X is Lindelöf. Thus X has a countable k-network, 
i.e., X is an ℵ0-space. From [2, Theorem 4.1] it follows that F (X) is an ℵ0-space as well. Thus F (X) is 
csf -countable.

(2) ⇒ (3). By Proposition 5.1 we can obtain that X is Lindelöf. Thus X has a countable k-network. �
Lemma 5.3. ([13, Lemma 4.9]) If Fk+1(X) is a sequential space for some k ∈ N, then either Fk(X) contains 
no closed copy of Sω or every first-countable closed subspace of X is locally countably compact.

Recently, F. Lin and C. Liu proved that, for a k∗-metrizable μ-space X, F (X) is k-space if and only if 
F5(X) is a k-space [13, Theorem 1.4]. However, there is a gap in the proof of this result [14]. We have the 
following result, which improves Theorem 1.5.

Theorem 5.4. The following are equivalent for a k∗-metrizable space X:

(1) F (X) is a kω-space or discrete;
(2) F (X) is a k-space;
(3) Fn(X) is a k-space and csf-countable for some n ≥ 5;
(4) F5(X) is a k-space and F4(X) is csf-countable;
(5) X is a kω-space or discrete.
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Proof. It is shown that (1) ⇔ (2) ⇔ (5) in [32, Theorem 5.3]. (5) ⇒ (3) by Theorem 5.2. Obviously, 
(3) ⇒ (4). Next, we shall show that (4) ⇒ (5). Without loss of generality we can assume that X is a 
non-discrete k∗-metrizable space.

(4) ⇒ (5). It follows from Theorem 5.2 that X is an ℵ0-space. So F5(X) is an ℵ0-space by [2, Theorem 4.1]. 
Thus, by Lemma 3.4, F5(X) is a sequential space, because F5(X) is a k- and σ-space. If F4(X) contains no 
closed copy of Sω, X is compact by Theorem 3.8. If F4(X) contains a closed copy of Sω, every first-countable 
closed subspace of X is locally countably compact by Lemma 5.3. Since X is k∗-metrizable, X has a 
point-countable k-network; therefore every first-countable closed subspace of X is locally metrizable [10], 
and hence locally compact. Thus X has a countable k-network B such that the closure of every element of 
B is compact. This implies that X is a kω-space. �
Corollary 5.5. Let X be a metrizable space. Then F (X) is a k-space if and only if F5(X) is a k-space and 
csf-countable
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