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In this paper, we continue the study of the symmetric products of generalized 
metric spaces in [39]. We consider the topological properties P such that the n-fold 
symmetric product Fn(X) of a topological space X has the topological properties 
P if and only if the space X or the product Xn does for each or some n ∈ N. 
Depending on the operations under closed subspaces, finite products and closed 
finite-to-one mappings, two general stability theorems are obtained on symmetric 
products. We can apply the methods to unify and simplify the proofs of some old 
results in the literature and obtain some new results on symmetric products, list 
or prove 68 topological properties which satisfy the general stability theorems, and 
give answers to Questions 3.6 and 3.35 in [39].

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Borsuk and Ulam [14] introduced the notion of a symmetric product of an arbitrary topological space. For 
a topological space X and each n ∈ N the n-fold symmetric product Fn(X) can be obtained as a quotient 
space of Cartesian product Xn. For the closed unit interval I, Borsuk and Ulam proved that the n-fold 

✩ Supported by the NSFC (No. 11471153, 11571158).
* Corresponding author.

E-mail addresses: tzbao84@163.com (Z. Tang), shoulin60@163.com (S. Lin), linfucai2008@aliyun.com (F. Lin).
https://doi.org/10.1016/j.topol.2017.11.004
0166-8641/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.topol.2017.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:tzbao84@163.com
mailto:shoulin60@163.com
mailto:linfucai2008@aliyun.com
https://doi.org/10.1016/j.topol.2017.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2017.11.004&domain=pdf


Z. Tang et al. / Topology and its Applications 234 (2018) 26–45 27
symmetric product Fn(I) is homeomorphic to In for each n ∈ {1, 2, 3}, and Fn(I) is not homeomorphic 
with any subset of Euclidean space Rn for any n ≥ 4, also that dimFn(I) = n for each n ∈ N. Bott [15]
showed that F3(S1) is homeomorphic to S3, where S1 and S3 are the unit circle and the three-sphere, respec-
tively. Later, Ganea [33], Molski [76], Schori [85], Macías [65–68] et al. further investigated the symmetric 
products.

Recently, Good and Macías [39] studied the symmetric products of generalized metric spaces. They 
obtained some generalized metric properties P such that for a topological space X and each n ∈ N, the 
space Fn(X) has the property P if and only if X does. It turns out that the behavior of the symmetric 
product topology mirrors the behavior of the usual product topology. Most interesting, their methods are 
constructive and do not relay on operations under products and closed mappings, which reveal the inner 
construction of the spaces X and Fn(X). They gave some examples of spaces X satisfying some properties, 
but F2(X) does not. The following questions were posed.

Question 1.1. [39, Question 3.6] If X is a Lašnev space, then is Fn(X) a Lašnev space for some integer 
n ≥ 2?

Question 1.2. [39, Question 3.35] Let X be a space and n ∈ N. If Fn(X) is a Morita’s P -space, then is X a 
Morita’s P -space?

Metrizability and compactness are the heart and soul of general topology. Also for applications, these 
two concepts are the most important: metric notions are used almost everywhere in mathematical analysis, 
while compactness is used in many parts of analysis and also in mathematical logic. Besides metrizability 
and compactness, there are a few other concepts which are fundamental in general topology, for examples, 
generalized metric spaces and covering properties [23,42].

In this paper, we continue to consider the symmetric products of generalized metric spaces and covering 
properties. What is a generalized metric space? The term is meant for classes which are ‘close’ to metrizable 
spaces in some sense: they usually possess some of the useful properties of metric spaces, and some of the 
theory or techniques of metric spaces carries over to these wider classes. To be most useful, they should be 
‘stable’ under certain topological operations, e.g., finite or countable products, closed subspaces, and perfect 
(i.e., closed, with compact point-inverses) mappings [42, p. 425]. A topological property is called a covering 
property if it can be characterized by every open cover of a space having a certain refinement, for examples, 
compactness, Lindelöfness, paracompactness, subparacompactness, etc. To be most useful, they should be 
‘stable’ under certain topological operations, e.g., closed subspaces, and closed or perfect mappings, but 
they may not be finite or countable productive.

Although Good and Macías pointed out that [39, p. 94]: “Where ever possible we have proved our results 
directly rather than relying on preservation under products and closed maps”, we still try to depend on 
the operations under closed subspaces, finite products and closed finite-to-one mappings, and apply the 
methods to unify and simplify the proofs of some old results in the literature and obtain some new results 
on symmetric products. In Section 3, we consider the topological properties P such that a topological space 
X has the property P if and only if Fn(X) does by a general stability theorem on the images of Xn for each 
n ∈ N (see Theorem 3.1), list or prove 43 properties which satisfy the general stability theorem, and give 
an affirmative answer to Question 1.2 in Theorem 3.10. In Section 4, we consider the topological properties 
P such that for a topological space X and each n ∈ N, the product Xn has the property P if and only if 
Fn(X) does by another general stability theorem on the images of Xn and the inverse images of Fn(X)
(see Theorem 4.1), list or prove 25 topological properties which satisfy the general stability theorem, and 
Question 1.1 is negatively answered in Example 4.15.

A lot of topological properties satisfy the general stability theorems, this paper lists just a part of 
them.



28 Z. Tang et al. / Topology and its Applications 234 (2018) 26–45
2. Preliminaries

All spaces are T2 unless stated otherwise. The notation N denotes the set of all positive integers. The 
mapping stands for a continuous and surjective function and may be denoted by f : X → Y . Readers may 
refer to [23,27,42] for notations and terminology not explicitly given here.

Let (X, τ) be a topological space, where τ is the topology for X. The following families of subsets of X
are considered:

(1) 2X = {A ⊆ X : A is non-empty and compact};
(2) F (X) = {A ∈ 2X : A is finite};
(3) Fn(X) = {A ∈ 2X : |A| ≤ n}, n ∈ N.

It is obvious that Fn(X) ⊆ Fn+1(X) for each n ∈ N and that F (X) =
⋃

n∈N
Fn(X).

We endow the set 2X with the Vietoris topology τV , the base of which consists of all subsets of the 
following form:

〈U1, . . . , Uk〉 = {A ∈ 2X : A ⊆
⋃

i≤k

Ui and A ∩ Ui 
= ∅ for each i ∈ {1, . . . , k}},

where each Ui is open in X for every i ≤ k and k ∈ N.
Observe that the sets Fn(X) and F (X) are endowed with the subspace topology of 2X . The space 2X

is called the hyperspace of non-empty compact subsets of X, the subspace F (X) is called the hyperspace of 
finite subsets of X and the subspace Fn(X) is called the n-fold symmetric product of X for each n ∈ N.

The mapping fn : Xn � Fn(X) given by fn(x1, . . . , xn) = {x1, . . . , xn} will be used frequently in this 
paper.

Lemma 2.1. Let n ∈ N. Then
(1) Fn(X) is closed in F (X).
(2) fn : Xn � Fn(X) is a closed finite-to-one mapping [39].

By Lemma 2.1, every Fm(X) is a closed subset of Fn(X) for each m, n ∈ N, m < n, and f1 : X � F1(X)
is a homeomorphism.

Let X be a space. For every P ⊆ X, the set P is a sequential neighborhood of x in X if every sequence 
converging to x is eventually in P . The set P is a sequentially open subset of X if P is a sequential 
neighborhood of each point in P . A space X is said to be a sequential space [30] if each sequentially open 
subset is open in X. For each space (X, τ) the sequential coreflection [31] of (X, τ), denoted by (X, στ ) or 
σX, is given by U ∈ στ if and only if U is sequentially open in (X, τ). As it is well known, σX is a sequential 
space [31, p. 52]; also, X and σX have the same convergent sequences [9, p. 678].

Let X be a space and x ∈ X. Suppose that P is a family of subsets in X. The family P is called a 
network of x [1] if x ∈ ∩P, and x ∈ U with U open in X, then P ⊆ U for some P ∈ P.

Definition 2.2. Let P =
⋃

x∈X Px be a cover of a space X such that for each x ∈ X, (a) Px is a network 
of x in X; (b) if U, V ∈ Px, then W ⊆ U ∩ V for some W ∈ Px.

(1) The family P is called an sn-network [59] for X if each element of Px is a sequential neighborhood 
of x in X for each x ∈ X. A space X is called snf -countable [59] if X has an sn-network P such that each 
Px is countable. A regular space X is called sn-metrizable [37] if X has a σ-locally finite sn-network.

(2) The family P is called an so-network [59] for X if each element of Px is sequentially open in X
for each x ∈ X. A space X is called sof-countable [59] if X has an so-network P such that each Px is 
countable. A regular space X is called so-metrizable [35] if X has a σ-locally finite so-network.
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(3) The family P is called a weak base [4] for X if, for every A ⊆ X, the set A is open in X whenever 
for each x ∈ A there exists P ∈ Px such that P ⊆ A. A space X is called weakly first-countable or 
gf -countable [4] if X has a weak base P such that each Px is countable. A regular space X is called 
g-metrizable [87] if X has a σ-locally finite weak base.

Definition 2.3. Let P =
⋃

x∈X Px be a cover of a space X, where each x ∈ ∩Px. The family P is called 
a cs-network [46] (resp. cs∗-network [34]) for X, if for every sequence {xn}n∈N converging to x ∈ U with 
U open in X, there exists P ∈ Px such that {xn}n∈N (resp. some subsequence {xni

}i∈N of {xn}n∈N) is 
eventually in P and P ⊆ U . A space X is called csf-countable [60] (resp. cs∗f -countable [8]1) if X has a 
cs-network (resp. cs∗-network) P such that each Px is countable.

The following results hold for separation properties of hyperspaces [71, Theorem 4.9]: a space X is a T2
(resp. regular, completely regular) space if and only if so is 2X .

3. The images of Xn

In this section we discuss the topological properties P such that a space X has the property P if and 
only if Fn(X) does for each or some n ∈ N. We obtain a general stability theorem as follows.

Theorem 3.1. Suppose a topological property P satisfies the following:
(1) P is closed hereditary;
(2) P is finite productive; and
(3) P is preserved under closed finite-to-one mappings.

Let X be a space and n ∈ N. Then X has the property P if and only if Fn(X) does.

Proof. If a space X has the property P, then the product Xn has the property P by condition (2). By 
Lemma 2.1, the mapping fn : Xn � Fn(X) is a closed finite-to-one mapping, then Fn(X) has the property 
P by condition (3).

Conversely, suppose Fn(X) has the property P. By condition (1) and Lemma 2.1, X has the prop-
erty P. �

As the applications of the general stability theorem, we will list or prove 43 topological properties which 
satisfy the conditions in Theorem 3.1, see Remarks 3.2 and 3.4, Corollary 3.9, and Theorems 3.10 and 3.16. 
The most important fact is to find the closed mapping properties on topological spaces, in which readers 
may refer to [19,56].

Remark 3.2. The following properties P satisfy the conditions of Theorem 3.1, thus a space X has the 
property P if and only if Fn(X) does for each or some n ∈ N, which were proved by the constructive 
methods in [39].

α-spaces [38,96],2 ℵ0-spaces [73], cosmic spaces [73], developable spaces [18,38], first-countable spaces [95], 
γ-spaces [38,52], locally compact spaces [27], metric spaces [78], Moore spaces [18,27,38], M2-spaces [13,24], 
Nagata spaces [12,24],3 stratifiable spaces [12,24], σ-spaces [27,80,88],4 regular spaces [27], and r-spaces [56].

1 By [8, Proposition 2], a space X is csf-countable if and only if it is cs∗f-countable.
2 In [38] an α-space is called a σ�-space and that, by [38, Lemma 4.1], the definition given by the authors is equivalent to the 

one given in [38].
3 Let f : X → Y be a closed finite-to-one mapping. If X is a Nagata space, then X is first countable. By Corollary 3.13, Y is 

first countable. Hence Y is a Nagata space by [12].
4 Let f : X → Y be a closed finite-to-one mapping. If X is a σ-space, then X is regular. By [27, Theorem 3.7.20], Y is regular. 

Then Y is a σ-space by [88].
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We only check that r-spaces are preserved under closed finite-to-one mappings in the above properties,5
others can be found in the relevant literature, or they are obvious. A topological space X is called an r-space
[73] if for each x ∈ X there exists a sequence {Un(x)}n∈N of open neighborhoods of x such that if xn ∈ Un(x)
for each n ∈ N, then the set {xn : n ∈ N} is contained in a compact set of X. The sequence {Un(x)}n∈N is 
called an r-sequence of x.

Lemma 3.3. Let f : X → Y be a closed finite-to-one mapping. If X is an r-space, then so is Y .

Proof. Let y ∈ Y and f−1(y) = {x1, . . . , xn} for some n ∈ N. Since X is an r-space, there is an r-sequence 
{Um(xi)}m∈N of xi for every i ∈ {1, . . . , n}. Obviously, f−1(y) ⊆

⋃
i≤n Um(xi) for each m ∈ N. Since f is 

a closed mapping, there is an open neighborhood Vm(y) of y such that f−1(Vm(y)) ⊆
⋃

i≤n Um(xi). Then 
{Vm(y)}m∈N is an r-sequence of y. In fact, if a sequence {ym}m∈N of Y satisfies ym ∈ Vm(y) for each m ∈ N. 
There exist im ∈ {1, . . . , n} and zm ∈ f−1(ym) ∩ Um(xim). Therefore, the set {zm : m ∈ N} is contained in 
a compact set of X. Thus, the set {ym : m ∈ N} = f({zm : m ∈ N}) is contained in a compact set of Y . 
This completes the proof. �
Remark 3.4. The following properties P of topological spaces satisfy the conditions of Theorem 3.1, thus a 
space X has the property P if and only if Fn(X) does for each or some n ∈ N, which does not list in [39].

ℵ-spaces [55,82], Čech-complete spaces [27],6 hemi-compact spaces [56], k-metrizable spaces [7], 
k∗-metrizable spaces [7], k-semi-stratifiable spaces [34,64], kω-spaces [32], quasi-developable spaces [10,21], 
quasi-metrizable spaces [38,53], semi-metrizable spaces [38,95], semi-stratifiable spaces [25], sn-metrizable 
spaces [37], so-metrizable spaces [62], spaces of countable type [93], spaces of pointwise countable type [28; 
Appendix, Lemma 5.3], spaces with a δθ-base [5,22], spaces with a point-countable base [5,28], spaces with 
a point-countable k-network [44], spaces with a σ-point-finite base [5,28], spaces with a uniform base [5,18,
94],7 strict p-spaces [26,38], strong Σ-spaces [16,79], and strong Σ�-spaces [63].8

In the above properties we only check the following results: (1) hemi-compact spaces are preserved under 
perfect mappings9; and (2) k-metrizability satisfies the conditions of Theorem 3.1. A topological space X is 
called a hemi-compact space [27] if X has a countable cover of compact subsets such that every compact set 
of X is contained in one of them. A mapping f : X → Y is called a proper mapping [7, p. 477] if f−1(K) is 
a compact subset of X whenever K is a compact subset of Y . The proper images of metrizable spaces are 
called k-metrizable spaces [7, p. 484].

Lemma 3.5. Let f : X → Y be a perfect mapping. If X is hemi-compact, then so is Y .

Proof. Since X is hemi-compact, there is a countable cover {An}n∈N of compact subsets in X such that each 
compact subset of X is contained in some An. Then {f(An)}n∈N is a countable cover of compact subsets 
in Y . If C is a compact subset of Y , then f−1(C) is a compact subset of X, since f is a perfect mapping. 
Thus, f−1(C) ⊆ An for some n ∈ N. That is C ⊆ f(An), and Y is hemi-compact. �
5 Lemma 3.3 was announced in [56], its proof is new.
6 Note that fn : Xn � Fn(X) is a closed finite-to-one mapping. If X is a Čech-complete space, so is Xn. According to [71, 

Theorem 4.9], Fn(X) is completely regular. Therefore, Fn(X) is Čech-complete by [27, Theorem 3.9.10].
7 The papers [18] and [94] do not mention spaces with a uniform base. However, according to [27, Lemma 5.4.7], a space with 

a uniform base if and only if it is developable and metacompact. Let f be a perfect mapping from X onto Y . If X is a space 
with a uniform base, then X is developable and metacompact. By [18, p. 273, lines 2 through 7] and [94, Theorem 1, p. 175], Y is 
developable and metacompact. So Y is a space with a uniform base.
8 It is easy to check that the countable product of strong Σ�-spaces is a strong Σ�-space, which proof is similar to strong Σ-spaces 

[79, Theorem 3.6]. The proof of the fact that being a strong Σ�-space is closed under countable unions of subspaces is similar to 
strong Σ-spaces [79, Theorem 3.2].
9 Lemma 3.5 was announced in [56], its proof is new.
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Lemma 3.6. k-metrizability satisfies the conditions of Theorem 3.1.

Proof. (1) k-metrizability is hereditary. Assume that Y is a k-metrizable space and Z is a subspace of Y . 
There are a metrizable space X and a proper mapping f : X → Y . Let S = f−1(Z). Obviously, S is a 
metrizable space. If A is a compact subset of Z, then A is compact in Y . Therefore, f−1(A) is compact in X, 
and (f |S)−1(A) = f−1(A) is compact in S. Thus f |S : S → Z is a proper mapping, and Z is a k-metrizable 
space.

(2) k-metrizability is countable productive. Suppose that {Yn}n∈N is a sequence of k-metrizable spaces. 
There are a sequence {Xn}n∈N of metrizable spaces and a sequence {fn : Xn → Yn}n∈N of proper mappings. 
Define f :

∏
n∈N

Xn →
∏

n∈N
Yn by f((xn)) = (fn(xn)) for each (xn) ∈

∏
n∈N

Xn. It is easy to check that 
f is a proper mapping. Hence 

∏
n∈N

Yn is a k-metrizable space.
(3) k-metrizability is preserved under closed finite-to-one mappings. Since the composition of two proper 

mappings is a proper mapping, k-metrizability is preserved under proper mappings. Clearly, every closed 
finite-to-one mapping is a proper mapping. Therefore, k-metrizability is preserved under closed finite-to-one 
mappings. �
Remark 3.7. The following properties P of topological spaces do not satisfy the conditions of Theorem 3.1, 
but it was proved in [39] that a space X has the property P if and only if Fn(X) does for each or some 
n ∈ N.

Separable spaces [39, Theorem 3.10], spaces with a Gδ-diagonal (resp. G∗
δ-diagonal) [39, Theorem 3.21], 

and spaces with countable chain condition (MA+¬CH) [39, Corollary 5.5].10

Let P be a topological property which is closed under the countable unions of closed subspaces possessing 
the property P. Hence, F (X) has the property P if each Fn(X) does by F (X) =

⋃
n∈N

Fn(X). The 
following is obtained.

Remark 3.8. The following properties P satisfy the condition: if a space X has the property P, then so 
does F (X).11

Cosmic spaces [1,73], semi-stratifiable spaces [80], separable spaces, σ-spaces [80], strong Σ-spaces [79], 
and strong Σ�-spaces [74].

A space (X, τ) is called submetrizable [42] if there exists a topology τ ′ on X such that τ ′ ⊆ τ and (X, τ ′)
is metrizable. The submetrizability is not preserved by closed finite-to-one mappings [84, Example 1].

Corollary 3.9. Let X be a space and n ∈ N. Then X is a submetrizable space if and only if so is Fn(X).

Proof. Since submetrizability is hereditary, it is only needed to prove the necessity. Let (X, τ) be a sub-
metrizable space. There exists a topology τ ′ on X such that τ ′ ⊆ τ and (X, τ ′) is metrizable. It is easy 
to see the Vietoris topologies τ ′V ⊆ τV on 2X . Put T ′

n = τ ′V |Fn(X) and Tn = τV |Fn(X). Then the sub-
space topologies T ′

n ⊆ Tn on Fn(X), and (Fn(X), T ′
n) is metrizable by Theorem 3.1. Hence Fn(X) is 

submetrizable. �
The following result give a positive answer to Question 1.2. Recall the definition of Morita’s P -spaces. 

A space X is called a Morita’s P -space [77] if, for every collection {U(α1, . . . , αn) : α1, . . . , αn ∈ A; n ∈ N}
of open subsets in X satisfying the following condition: U(α1, . . . , αn) ⊆ U(α1, . . . , αn, αn+1) for every 

10 Separable property and spaces with countable chain condition are not closed hereditary [27, Example 2.3.12]; and spaces with 
a Gδ-diagonal (resp. G∗

δ -diagonal) are not preserved by a closed finite-to-one mapping [84, Example 1].
11 Regularity does not satisfy the countable closed sum theorem [27, Example 1.5.6]. If X is a regular space, then 2X is regular 
[71, Theorem 4.9], so is F(X).
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α1, . . . , αn+1 ∈ A and n ∈ N, there exists a collection {F (α1, . . . , αn) : α1, . . . , αn ∈ A; n ∈ N} of closed 
subsets in X satisfying the following conditions:

(1) F (α1, . . . , αn) ⊆ U(α1, . . . , αn);
(2) 

⋃
n∈N

F (α1, . . . , αn) = X if 
⋃

n∈N
U(α1, . . . , αn) = X for each sequence {αn}n∈N.

Theorem 3.10. Let X be a space and n ∈ N. Then X is a Morita’s P -space if and only if so is Fn(X).

Proof. Since the necessity was proved by [39, Theorem 3.34], it is enough to prove that every Morita’s 
P -space is hereditary with respect to closed subspaces by Lemma 2.1.

Let X be a Morita’s P -space, and Y be a closed subspace of X. Assume that a collection {U(α1, . . . , αn) :
α1, . . . , αn ∈ A; n ∈ N} of open subsets in Y satisfies the following condition: U(α1, . . . , αn) ⊆
U(α1, . . . , αn, αn+1) for each α1, . . . , αn+1 ∈ A and n ∈ N. Put H(α1, . . . , αn) = U(α1, . . . , αn) ∪ (X − Y ). 
Clearly, H(α1, . . . , αn) is open in X and H(α1, . . . , αn) ⊆ H(α1, . . . , αn, αn+1). By the definition of Morita’s 
P -spaces, there exists a collection {F (α1, . . . , αn) : α1, . . . , αn ∈ A; n ∈ N} of closed subsets in X satisfying 
the following conditions:

(1) F (α1, . . . , αn) ⊆ H(α1, . . . , αn);
(2) 

⋃
n∈N

F (α1, . . . , αn) = X if 
⋃

n∈N
H(α1, . . . , αn) = X for each sequence {αn}n∈N.

It is easy to check that the family {F (α1, . . . , αn) ∩ Y : α1, . . . , αn ∈ A; n ∈ N} is desired by Morita’s 
P -spaces. Thus Y is a Morita’s P -space. This completes the proof. �

It is well known that every Morita’s P -space is preserved by closed mappings [77, Theorem 3.3]. The 
authors do not know whether the property of Morita’s P -spaces are finite productive.

Next, we will show that snf -countable (resp. sof -countable, csf -countable) spaces satisfy the conditions 
in Theorem 3.1, which are preserved by closed finite-to-one mappings specifically.

A mapping f : X → Y is called a sequentially quotient mapping [11, p. 174] if, whenever f−1(H) is 
sequentially open in X for each H ⊆ Y , the set H is sequentially open in Y .12 It is well known that f is 
sequentially quotient if and only if for each sequence {yn}n∈N converging to a point y ∈ Y , there exists a 
sequence {xi}i∈N in X such that each xi ∈ f−1(yni

) for some subsequence {yni
}i∈N of {yn}n∈N, and the 

sequence {xi}i∈N converges to some x ∈ f−1(y) [11, Theorem 4.5].

Lemma 3.11. Let f : X → Y be a closed finite-to-one mapping. Then f is a sequentially quotient mapping.

Proof. Assume that {yn}n∈N is a sequence of Y converging to a point y ∈ Y . Let S = {yn : n ∈ N} ∪ {y}. 
Then f−1(S) is a compact countable subset of X, thus f−1(S) is a compact metric space [42, Theorems 
2.13 and 4.6]. For every n ∈ N, choose a point xn ∈ f−1(yn). Then the sequence {xn}n∈N in f−1(S) has a 
convergent subsequence {xni

}i∈N in X. By [11, Theorem 4.5], f is sequentially quotient. �
Lemma 3.12. Let f : X → Y be a closed finite-to-one mapping. If X is snf -countable, then so is Y .

Proof. Let y ∈ Y and f−1(y) = {x1, . . . , xn} for some n ∈ N. Since X is snf -countable, there is a decreasing 
sn-network {Ui,j}j∈N of xi for every i ∈ {1, . . . , n}. Put Vj =

⋃
i≤n Ui,j for each j ∈ N. Then the set f(Vj)

is a sequential neighborhood of y in Y . If not, there is a sequence {yn}n∈N of Y converging to y such that 
yn /∈ f(Vj) for each n ∈ N. By Lemma 3.11, f is a sequentially quotient mapping, there is a sequence 
{zk}k∈N in X converging to a point z ∈ f−1(y) such that ynk

= f(zk) for each k ∈ N. Thus, there exists 
i0 ∈ {1, . . . , n} with z = xi0 . Since the set Ui0,j is a sequential neighborhood of xi0 , there is k0 ∈ N

such that zk ∈ Ui0,j ⊆ Vj for every k > k0. That is ynk
= f(zk) ∈ f(Vj) for every k > k0, which is 

12 Let f : X → Y be a continuous mapping. If a subset H of Y is sequentially open, then f−1(H) is sequentially open in X.
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a contradiction. Next, we will show that the family {f(Vj)}j∈N is an sn-network of y in Y . Let y ∈ W

with W open in Y . Then f−1(y) = {x1, . . . , xn} ⊆ f−1(W ). For every i ∈ {1, . . . , n}, there exists ji ∈ N

such that xi ∈ Ui,ji ⊆ f−1(W ). Put j = max{ji : i ∈ {1, . . . , n}}. Then f−1(y) ⊆ Vj ⊆ f−1(W ), that is 
y ∈ f(Vj) ⊆ W . This completes the proof. �

A topological space X is called a Fréchet space [30] if, for any subset A ⊆ X and x ∈ A, there is a 
sequence in A converging to the point x in X.

Corollary 3.13. Let f : X → Y be a closed finite-to-one mapping. If X is weakly first-countable (resp. 
first-countable), then so is Y .

Proof. Since sequential (resp. Fréchet) spaces are preserved by closed mappings [30, Propositions 1.2 and 
2.3], Y is a sequential (resp. Fréchet) space.13 By Lemma 3.12, Y is an snf -countable space. It is well known 
that a space is weakly first-countable (resp. first-countable) if and only if it is sequential (resp. Fréchet) and 
snf -countable [Appendix, Lemma 5.1]. Hence Y is weakly first-countable (resp. first-countable). �
Lemma 3.14. Let f : X → Y be a closed finite-to-one mapping. If X is sof-countable, then so is Y .

Proof. Let σX, σY be the sequential coreflection of the spaces X, Y , respectively. Define g : σX → σY by 
g(x) = f(x) for each x ∈ X. Then g is finite-to-one.

Claim 1. σX is first-countable.
Let P =

⋃
x∈X Px be an so-network for X. Since X is sof -countable, we can assume that the family 

Px is a decreasing family of sequentially open subsets of X for each x ∈ X. Obviously, P is a family of 
open subsets of σX. We will show that the family Px = {Px,n}n∈N is a local base of x in σX. If not, there 
is an open neighborhood U of x in σX such that Px,n \ U 
= ∅ for every n ∈ N. Take xn ∈ Px,n \ U , n ∈ N, 
then the sequence {xn}n∈N converges to x, thus U is not sequentially open in X, which is a contradiction. 
Hence, σX is first-countable.

Claim 2. g is a continuous and closed mapping.
Let F be closed in σY , i.e., the set F be sequentially closed in Y . Since f is continuous, f−1(F ) is 

sequentially closed in X. Thus f−1(F ) is closed in σX. Therefore, g is continuous.
Let A be a closed subset of σX. Suppose {yn}n∈N is a sequence in f(A) converging to a point y in Y . 

Choose xn ∈ A such that yn = f(xn) for each n ∈ N. By Lemma 3.11, it follows that there is a convergent 
subsequence {xni

}i∈N of {xn}n∈N in X. Suppose that the sequence {xni
}i∈N converges to a point x in X. 

Since A is sequentially closed in X, the limit x ∈ A. Therefore, the sequence {f(xni
)} = {yni

} converges to 
the point y in Y . This implies y = f(x) ∈ f(A), and f(A) is sequentially closed in Y , i.e., f(A) is closed in 
σY . Then g : σX → σY is closed.

By Corollary 3.13 and Claims 1 and 2, the space σY is first-countable. Therefore, Y is sof -countable. �
Lemma 3.15. Let f : X → Y be a closed finite-to-one mapping. If X is csf-countable, then so is Y .

Proof. Suppose y ∈ Y and f−1(y) = {x1, . . . , xn} for some n ∈ N. Let {Ui,j}j∈N be a cs-network of xi

for every i ∈ {1, . . . , n}. Put Py = {f(Ui,j) : i ∈ {1, . . . , n}, j ∈ N}. We claim that the family Py is a 
cs∗-network of y in Y . In fact, assume {yn}n∈N is a sequence in Y converging to the point y, and V is a 
neighborhood of y in Y . By Lemma 3.11, f is a sequentially quotient mapping. Then there is a convergent 
sequence {zk}k∈N in X such that {f(zk)}k∈N is a subsequence of {yn}n∈N. Suppose the sequence {zk}k∈N

13 In [30, p. 113, lines 25 through 27], the author mentioned that “It is easy to see that any open or closed map is pseudo-open 
and that each pseudo-open map is a quotient map”. Therefore, sequential (resp. Fréchet) spaces are preserved by closed mappings 
[30, Propositions 1.2 and 2.3].
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converges to z ∈ f−1(y). There is i ∈ {1, . . . , n} such that z = xi. It follows from z ∈ f−1(V ) that there is 
j ∈ N such that Ui,j ⊆ f−1(V ) and the sequence {zk}k∈N is eventually in Ui,j . Thus, the sequence {yn}n∈N

has a subsequence which is eventually in f(Ui,j) and f(Ui,j) ⊆ V . This shows that the family Py is a 
cs∗-network of y in Y . Therefore, Y is cs∗f -countable. By [8, Proposition 2], Y is csf -countable. �

According to the definitions, it is easy to see that snf -countable spaces (resp. sof -countable spaces, 
csf -countable spaces) are closed hereditary and finite productive. Therefore, by Lemma 3.12 (resp. Lem-
mas 3.14 and 3.15) and Theorem 3.1, we have the following result.

Theorem 3.16. Let X be a space and n ∈ N. Then X is snf -countable (resp. sof-countable, csf-countable) 
if and only if Fn(X) is.

A regular space with a σ-closure-preserved base is called an M1-space [24]. In [39, Theorem 3.26], the 
authors proved the following result: Let X be a space and n ∈ N. Then X is an M1-space if and only if 
Fn(X) is. In the proof of [39, Theorem 3.26], the authors pointed out that each closed subset of an M1-space 
is an M1-space. Unfortunately, the proof maybe have a gap because we do not know whether each M1-space 
is closed hereditary [43, Problem 1 and Theorem 1.1]. Therefore, we have the following question.

Question 3.17. Let X be a space. If Fn(X) is an M1-space for some integer n ≥ 2, then is X an M1-space?

A completely regular space X is called a p-space [42, pp. 441–442] if there exists a sequence {Un}n∈N

of families of open subsets of the Čech-Stone compactification βX such that (i) each Un covers X; (ii) for 
each x ∈ X, 

⋂
n∈N

st(x, Un) ⊆ X.

Question 3.18. If X is a p-space, then is Fn(X) a p-space for some integer n ≥ 2?

4. The inverse images of Fn(X)

In this section, we will focus on the n-fold symmetric products of topological properties which are not 
finite productive. We discuss the topological property P such that the product Xn for a space X has the 
property P if and only if Fn(X) does for each n ∈ N.

It is easy to prove the following general stability theorem by Lemma 2.1.

Theorem 4.1. Suppose a topological property P satisfies the following:
(1) P is preserved under closed finite-to-one mappings; and
(2) P is an inverse invariant of closed finite-to-one mappings.

Let X be a space and n ∈ N. Then the product Xn has the property P if and only if Fn(X) does.

As the applications of the general stability theorem, we will list or prove 25 topological properties which 
satisfy the conditions in Theorem 4.1, see Remarks 4.2 and 4.3, Theorems 4.6, 4.8, 4.10, 4.12 and 4.14, and 
Corollary 4.11.

Remark 4.2. The conditions in Theorem 4.1 are satisfied by the following properties of topological spaces.
β-spaces [92; Appendix, Lemma 5.5], k-spaces [2,27], q-spaces [95; Appendix, Lemma 5.5], sequential 

spaces [31; Appendix, Lemma 5.4], Σ-spaces [79], Σ�-spaces [63,81], wM -spaces [49; Appendix, Lemma 5.5], 
and wσ-spaces [92; Appendix, Lemma 5.5].

Remark 4.3. The conditions in Theorem 4.1 are satisfied by the following covering properties of topological 
spaces.
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Iso-compact spaces [6], Lindelöf spaces [27], mesocompact spaces [51,69],14 metacompact spaces [40,
94], paracompact spaces [27,72], para-Lindelöf spaces [19,20], subparacompact spaces [16,17], θ-refinable 
spaces [19,50], and weakly θ-refinable spaces [23; Appendix, Lemma 5.6].

A space X is called a strongly Fréchet space [86] if, for every decreasing sequence {An}n∈N of subsets in 
X with x ∈

⋂
n∈N

An, there is xn ∈ An for each n ∈ N such that the sequence {xn}n∈N converges to x.

Lemma 4.4. Let f : X → Y be a closed finite-to-one mapping. If Y is a Fréchet (resp. strongly Fréchet) 
space, then so is Y .

Proof. This lemma was announced in [56], its proof is new. We only prove the case of strongly Fréchet spaces. 
Let {An}n∈N be a decreasing sequence of subsets in X with x ∈

⋂
n∈N

An. Put f−1(f(x)) = {x1, . . . , xn}
for some n ∈ N with x1 = x. Since X is a T2 space, there is an open neighborhood V of x such that 
V ∩{x2, . . . , xn} = ∅. Therefore, x ∈ V ∩An ⊆ V ∩An for each n ∈ N. Thus, f(x) ∈ f(V ∩An) = f(V ∩An). 
Since Y is a strongly Fréchet space, there is zn ∈ V ∩An for each n ∈ N such that the sequence {f(zn)}n∈N

converges to f(x). By Lemma 3.11 and {An}n∈N being a decreasing sequence of subsets, we can assume 
that the sequence {zn}n∈N is a convergent sequence in X, and its limit is in the set V ∩ f−1(f(x)) = {x}, 
i.e., {zn}n∈N converges to x. Therefore, X is a strongly Fréchet space. �

Let (X, τ) be a space. A function g : N × X → τ is called a g-function on X if, for every x ∈ X and 
n ∈ N, x ∈ g(n + 1, x) ⊆ g(n, x). A space X is called a wγ-space [47] if, there is a g-function on X such 
that if yn ∈ g(n, p) and xn ∈ g(n, yn) for each n ∈ N, then the sequence {xn}n∈N has an accumulation point 
in X, and the g-function is called a wγ-function.

Lemma 4.5. Let f : X → Y be a quasi-perfect mapping.15 If X is a wγ-space, then so is Y .

Proof. Since (X, τX) is a wγ-space, there is a wγ-function g : N ×X → τX on X.
Claim. If a sequence {xn}n∈N in X has an accumulation point, then any sequence {zn}n∈N with zn ∈

g(n, xn) has an accumulation point in X.
In fact, suppose that x is an accumulation point of the sequence {xn}n∈N in X. There is a subsequence 

{xnk
}k∈N of {xn}n∈N such that xnk

∈ g(k, x) for each k ∈ N. Therefore, znk
∈ g(nk, xnk

) ⊆ g(k, xnk
). Then 

the sequence {znk
}k∈N has an accumulation point in X.

Now, define a function h : N ×Y → τY into the topology space (Y, τY ) by h(n, y) = Y \ f(X \∪{g(n, x) :
f(x) = y}). Then h is a g-function on Y since f is closed. We will show that h is a wγ-function on Y . In 
fact, for each q ∈ Y , let {bn}n∈N and {yn}n∈N be sequences of Y such that bn ∈ h(n, q) and yn ∈ h(n, bn)
for each n ∈ N. Since f−1(yn) ⊆ f−1(h(n, bn)) ⊆

⋃
{g(n, x) : f(x) = bn}, there exist an ∈ f−1(bn) and 

xn ∈ f−1(yn) ∩ g(n, an). And since f−1(bn) ⊆ f−1(h(n, q)) ⊆
⋃
{g(n, x) : f(x) = q}, there is pn ∈ f−1(q)

such that an ∈ g(n, pn). The sequence {pn}n∈N has an accumulation point, because f−1(q) is countably 
compact in X. By Claim, an ∈ g(n, pn) and xn ∈ g(n, an), the sequence {xn}n∈N has an accumulation point 
in X. Therefore, {yn}n∈N has an accumulation point in Y by each xn ∈ f−1(yn). Thus, Y is a wγ-space. �

Since Fréchet spaces (resp. strongly Fréchet spaces) are preserved by pseudo-open mappings [30, Proposi-
tion 2.3] (resp. countably bi-quotient mappings [86, Proposition 3.4]) and wγ-spaces are an inverse invariant 
under quasi-perfect mappings [Appendix, Lemma 5.5], the following result is obvious by Lemma 4.4 (resp. 
Lemmas 4.4, 4.5) and Theorem 4.1.

14 Kao and Wu in [51] corrected a gap in [69] and showed that the image of a mesocompact space under a prefect mapping is 
mesocompact.
15 A closed mapping f : X → Y is quasi-perfect [19] if, for every y ∈ Y , f−1(y) is a countably compact subset in X.
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Theorem 4.6. Let X be a space and n ∈ N. Then the product Xn is a Fréchet space (resp. strongly Fréchet 
space, wγ-space) if and only if Fn(X) is.

A topological space X is called having countable tightness [75, Definition 8.2 and Proposition 8.5]16 if, 
for any subset A ⊆ X and x ∈ A, there is a countable subset C ⊆ A such that x ∈ C.

Lemma 4.7. Let f : X → Y be a closed finite-to-one mapping. If Y has countable tightness, then X does.

Proof. Let A ⊆ X and x ∈ A. Put f−1(f(x)) = {x1, . . . , xn} for some n ∈ N with x = x1. Since the space 
X is T2, there are disjoint open subsets V1, V2 of X such that x ∈ V1 and {x2, . . . , xn} ⊆ V2. Therefore, 
x ∈ V1 ∩A ⊆ V1 ∩A. Thus, f(x) ∈ f(V1 ∩A) = f(V1 ∩A). Since the space Y has countable tightness, there 
is a countable subset C ⊆ V1 ∩ A such that f(x) ∈ f(C) = f(C). This implies f−1(f(x)) ∩ C 
= ∅. Since 
f−1(f(x)) ∩ C ⊆ (V1 ∪ V2) ∩ V1 = V1, it follows that f−1(f(x)) ∩ C = {x}, that is x ∈ C. Then X has 
countable tightness. �

Since a space of countable tightness is preserved by quotient mappings [75, Lemma 8.4], the following 
result is obtained by Lemma 4.7 and Theorem 4.1.

Theorem 4.8. Let X be a space and n ∈ N. Then the product Xn has countable tightness if and only if 
Fn(X) does.

A space X is called a k-space [27, p. 152] if, for every A ⊆ X, the set A is closed in X if and only if the 
intersection of A with any compact subspace K of the space X is relatively closed in K. Every sequential 
space is a k-space with countable tightness [75, p. 119 and Lemma 8.3].

Example 4.9. There is a Fréchet space X such that F2(X) is neither a k-space nor of countable tightness.

Proof. Let Sω1 be the quotient space obtained by identifying all the limit points of the topological sum of 
ω1 many non-trivial convergent sequences. Then the space Sω1 is a Fréchet space, but the product (Sω1)2 is 
neither a k-space [41, Lemma 5] nor of countable tightness [45, p. 303]. By Theorems 4.1 and 4.8, F2(Sω1)
is neither a k-space nor of countable tightness. �

A function d : X ×X → [0, ∞) is called a symmetric on the set X if, for each x, y ∈ X, (i) d(x, y) = 0 if 
and only if x = y; and (ii) d(x, y) = d(y, x). Let B(x, ε) = {y ∈ X : d(x, y) < ε} for every x ∈ X and ε > 0. 
A space X is called symmetrizable [4] if, there is a symmetric d on the set X such that a subset U ⊆ X is 
open if and only if for each x ∈ U , there exists ε > 0 with B(x, ε) ⊆ U . Every symmetrizable space is weakly 
first-countable [4, p. 129]. Symmetrizability is not an inverse invariant of closed finite-to-one mappings [70, 
Example 4.8].

Theorem 4.10. Let X be a space and n ∈ N. Then the following are equivalent:
(1) X is symmetrizable and Xn is a k-space;
(2) Xn is a symmetrizable space;
(3) Fn(X) is a symmetrizable space.

Proof. (1) ⇔ (2) by [89, Theorem 4.2].
(2) ⇒ (3). Since symmetrizable spaces are preserved under closed finite-to-one mappings [89, p. 110], 

Fn(X) is a symmetrizable space by Lemma 2.1.

16 Countable tightness is called the property determined by countable subsets in [75].
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(3) ⇒ (1). If Fn(X) is a symmetrizable space, then Fn(X) is a sequential space [87, 1.4] and X is a sym-
metrizable space. Since sequentiality is an inverse invariant of closed finite-to-one mappings by [Appendix, 
Lemma 5.4], the product Xn is a sequential space by Lemma 2.1, and Xn is a k-space. �
Corollary 4.11. Let X be a space and n ∈ N. Then the following are equivalent:

(1) X is g-metrizable and Xn is a k-space;
(2) Xn is a g-metrizable space;
(3) Fn(X) is a g-metrizable space.

Proof. (1) ⇔ (2) by [90, Theorem 2.9].
(2) ⇒ (3). Since g-metrizable spaces are preserved under closed finite-to-one mappings [Appendix, 

Lemma 5.2], Fn(X) is a g-metrizable space by Lemma 2.1.
(3) ⇒ (1). Suppose Fn(X) is a g-metrizable space. Obviously, X is g-metrizable. Since every g-metrizable 

space is symmetrizable [87, 1.8], Xn is a k-space by Theorem 4.10. �
Theorem 4.12. Let X be a space and n ∈ N. Then the following are equivalent:

(1) X is snf -countable and Xn is a sequential space;
(2) Xn is a weakly first-countable space;
(3) Fn(X) is a weakly first-countable space.

Proof. (1) ⇒ (2). Since X is snf -countable, it is easy to see that the product Xn is snf -countable. Therefore, 
Xn is a weakly first-countable space by [Appendix, Lemma 5.1].

(2) ⇒ (3). Since the mapping fn : Xn � Fn(X) is a closed finite-to-one mapping and the product Xn

is a weakly first-countable space, by Corollary 3.13, Fn(X) is a weakly first-countable space.
(3) ⇒ (1). If Fn(X) is a weakly first-countable space, then X is snf -countable and Fn(X) is sequential. 

Since the mapping fn : Xn � Fn(X) is a closed finite-to-one mapping, the product Xn is a sequential 
space by [Appendix, Lemma 5.4]. �
Example 4.13. There is a g-metrizable space X such that F2(X) is not a k-space.

Proof. Let Y = S2×(P ∪{0}), where S2 is the Arens’ space [27, Example 1.6.19] and P is the set of irrational 
numbers. Then the space Y is not a k-space [63, Example 1.8.6, p. 44]. Put X = S2 ⊕ (P ∪ {0}). Then the 
space X is a g-metrizable space because the spaces S2 and (P ∪ {0}) are g-metrizable spaces. Since Y is a 
closed subset of X2 and the property of k-spaces is closed hereditary, we can conclude that the product X2

is not a k-space. Therefore F2(X) is not a k-space by Lemma 2.1 or Remark 4.2. �
Example 4.13 shows also that there is a g-metrizable space (resp. symmetrizable space, weakly first-

countable space, sequential space, k-space) X such that F2(X) is not a g-metrizable space (resp. sym-
metrizable space, weakly first-countable space, sequential space, k-space).

A topological space X is called a Lašnev space [19] if it is a closed image of a metric space.

Theorem 4.14. The following are equivalent for a space X:
(1) Fn(X) is a metrizable space for each n ∈ N;
(2) Fn(X) is a metrizable space for some integer n ≥ 2;
(3) Fn(X) is a Lašnev space for some integer n ≥ 2;
(4) X2 is a Lašnev space;
(5) X is a metrizable space.
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Proof. Clearly, (1) ⇒ (2) ⇒ (3). (4) ⇔ (5) by [48, Theorem B], and (1) ⇔ (5) by Theorem 3.1 or 
Remark 3.2.

To complete the proof, we will show that (3) ⇒ (4). Suppose Fn(X) is a Lašnev space for some integer 
n ≥ 2. By Lemma 2.1, F2(X) is a closed subset of Fn(X), then F2(X) is a Lašnev space. By [39, Theorem 
3.9], X2 is a Lašnev space. �

The following example gives a negative answer to Question 1.1.

Example 4.15. There is a Lašnev space X such that Fn(X) is not a Lašnev space for any integer n ≥ 2.

Proof. Let Sω be the quotient space obtained by identifying all the limit points of the topological sum of ω
many non-trivial convergent sequences. Then the space Sω is a non-metrizable Lašnev space [63, Example 
1.8.7, p. 45]. Hence Fn(Sω) is not a Lašnev space for any integer n ≥ 2 by Theorem 4.14. �

A space (X, τ) is called a wΔ-space [63, Definition B.3.36] if, there is a g-function g : N ×X → τ on X
such that if {x, xn} ⊆ g(n, yn) for each n ∈ N, then the sequence {xn}n∈N has an accumulation point in X.

Question 4.16. Let X be a space and an integer n ≥ 2. If the product Xn is a wΔ-space, then is Fn(X) a 
wΔ-space?

Remark 4.17. If Fn(X) is a wΔ-space, then so is Xn by [63, Proposition 3.6.15]

Remark 4.18. Recently, L.-X. Peng and Y. Sun in [83] considered symmetric products of generalized metric 
spaces. Their methods are also constructive and do not relay on operations under products and closed 
mappings. They proved that: Let X be a topological space and let n ∈ N. If P satisfies one of the following 
properties, then X satisfies P if and only if Fn(X) satisfies P.

(G) [83, Theorem 4]; open (G) [83, Theorem 5]; spaces with a point-countable base [83, Theorem 7]; 
second-countable spaces [83, Proposition 8]; spaces with a regular Gδ-diagonal [83, Theorem 10]; semi-
stratifiable spaces [83, Theorem 12]; semi-metrizable spaces [83, Theorem 13]; k-semistratifiable spaces [83, 
Theorem 16]; scattered spaces [83, Theorem 17]; spaces with a point-countable cs-network [83, Theorem 
18]; spaces in which each compact subspace is metrizable [83, Theorem 23].
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5. Appendix

In this Appendix, we list the definitions of some topological spaces which are not defined in the paper, 
and also prove some results from the references in Chinese for the convenience of the reader by reviewer’s 
suggestions. For the convenience of the references, the definitions of the concepts may not be cited in the 
original literature.

5.1. Definitions and properties

(1) A space X is called a regular space if, for every x ∈ X and every closed set F ⊆ X such that x /∈ F

there exist disjoint open sets U1, U2 such that x ∈ U1 and F ⊆ U2.
(2) A space X is called a completely space if, for every x ∈ X and every closed set F ⊆ X such that x /∈ F

there exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(F ) ⊆ {1}.
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(3) A space X is called first-countable if, for every x ∈ X, there is a countable neighborhood base of x
in X.

(4) A space X is called separable if X has a countable dense subset.
(5) A space X is called compact if every open cover of X has a finite subcover.
(6) A space X is called locally compact if, for every x ∈ X, there exists a neighborhood U of x such 

that U is compact in X.
(7) A space X is called a kω-space [32] if there is a countable cover {Cn}n∈N of compact subsets of X

such that A ⊆ X is closed in X if and only if A ∩ Cn is relatively closed in Cn for every n ∈ N.
(8) A completely space X is called Čech-complete [27, p. 196] if it is a Gδ-set in some Hausdorff com-

pactification of it.
(9) A space X is called Lindelöf if every open cover of X has a countable subcover.
(10) A space X is called para-Lindelöf [23, p. 367] if every open cover of X has a locally countable open 

refinement.
(11) A space X is called paracompact [23, p. 351] if every open cover of X has a locally finite open 

refinement.
(12) A space X is called subparacompact [23, p. 360] if every open cover of X has a σ-discrete closed 

refinement.
(13) A space X is called iso-compact [6, p. 589] if every closed countably compact subset of X is compact.
(14) A space X is called mesocompact [69, Definition 1.1] if every open cover of X has a compact-finite 

open refinement.
(15) A space X is called metacompact [23, p. 362] if every open cover of X has a point-finite open 

refinement.
(16) A space X is called weakly θ-refinable [23, p. 362] if, for any open cover U of X there is an open 

refinement G =
⋃

n∈N
Gn such that if x ∈ X there is some n ∈ N such that 1 ≤ ord(x, Gn) < ω. If this 

condition is strengthened to require that each Gn also covers X, then X is said to be θ-refinable [23, p. 362].
(17) A space X is called of countable type [63, p. 85] if, for each compact subset F of X, there is a 

compact set K in X containing F such that K has a countable neighborhood base in X.
(18) A function d : X ×X → [0, ∞) is called a distance on X if d satisfies the following conditions for all 

x, y, z ∈ X:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) + d(y, z) ≥ d(x, z).
Then (X, d) is called a metric space. For each ε > 0, let B(x, ε) = {y ∈ X : d(x, y) < ε}. The family 

{B(x, ε) : x ∈ X, ε > 0} is a base for X.
(19) A space X is called semi-metrizable [42, p. 482] if there is a symmetric d on X such that for each 

x ∈ X, {B(x, ε) : ε > 0} forms a neighborhood base of x.
(20) A function d : X ×X → [0, ∞) is called a quasi-metric [42, p. 488] on X if d satisfies the following 

conditions for all x, y, z ∈ X:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) + d(y, z) ≥ d(x, z).
A space X is called quasi-metrizable [42, p. 488] if there is a quasi-metric d on X such that for each 

x ∈ X, {B(x, ε) : ε > 0} forms a neighborhood base of x.
(21) Suppose f : X → Y is a mapping.
(i) f is called a subproper mapping [7, p. 477] if, there is a subset Z of X such that f(Z) = Y and 

Z ∩ f−1(K) is a compact subset of X whenever K is a compact subset of Y .
(ii) The subproper images of metrizable spaces are called k∗-metrizable spaces [7, p. 484].
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(22) A space X is said to have a Gδ-diagonal [42, p. 429] if Δ = {(x, x) : x ∈ X} is a Gδ-set in X2.
(23) A space X is said to have a G∗

δ-diagonal [42, p. 432] if there exists a sequence {Gn}n∈N of open 
covers of X such that for each x ∈ X, {x} =

⋂
n∈N

st(x,Gn).
(24) A sequence {Gn}n∈N of open covers of a space X is called a development [42, p. 426] for X if, for 

each x ∈ X the family {st(x, Gn) : n ∈ N} is a neighborhood base of x. A developable space [42, p. 426] is a 
space with a development. A Moore space [42, p. 426] is a regular developable space.

(25) A space X is called quasi-developable [42, p. 479] if there exists a sequence {Gn}n∈N of families of 
open subsets of X such that for each x ∈ X, {st(x, Gn) : x ∈

⋃
Gn, n ∈ N} is a neighborhood base of x.

(26) A completely regular space X is called a strict p-space [42, pp. 441–442] if there exists a sequence 
{Un}n∈N of families of open subsets of the Čech-Stone compactification βX such that

(i) each Un covers X;
(ii) for each x ∈ X, 

⋂
n∈N

st(x, Un) =
⋂

n∈N
st(x,Un) ⊆ X.

(27) A space X is called a stratifiable space [42, p. 456] if, there is a function H : N × τ c → τ satisfying 
the following conditions17:

(i) n ∈ N, F ∈ τ c ⇒ H(n, F ) ⊇ F =
⋂

m∈N
H(m,F );

(ii) L ⊆ F ⇒ H(n, L) ⊆ H(n, F ).
(28) A space X is semi-stratifiable [63, p. 19] if there is a function F : N × τ → τ c such that
(i) U ∈ τ ⇒ U =

⋃
n∈N

F (n, U);
(ii) V ⊆ U ⇒ F (n, V ) ⊆ F (n, U).
Further assume X is a regular space and satisfies the following condition, then X is called a k-semi-

stratifiable space [63, p. 19].
(iii) For every compact subset K of X with K ⊆ U ∈ τ , there is m ∈ N such that K ⊆ F (m, U).
(29) A collection B of subsets of X is a quasi-base for X if, whenever x ∈ U with U open, then 

x ∈ B◦ ⊆ B ⊆ U for some B ∈ B. An M2-space [42, p. 465] is a regular space with a σ-closure-preserving 
quasi-base.

(30) A space X is called a Nagata space [24, Theorem 3.1] if it is a first-countable M3-space.
(31) A family P of subsets of X is said to be point-finite [63, p. 13] (resp. point-countable [63, p. 11]) if 

each point of X only belongs to at most finite (resp. countably) many elements of P. P is called a k-network
[42, Definition 11.1, p. 493] for X if K ⊆ U with K compact and U open in X, then K ⊆ ∪P ′ ⊆ U for 
some finite P ′ ⊆ P.

(i) A space X is called a space with a point-countable base [42, p. 472] (resp. space with a point-countable 
k-network) if X has a base (resp. k-network) which is point-countable.

(ii) A space X is called a space with a σ-point-finite base if X has a base which is the union of countable 
point-finite families.

(32) P is a uniform base [63, p. 134], if for each point x ∈ X and each countably infinite subset P1 of 
{P ∈ P : x ∈ P}, P1 is a neighborhood base at x.

(33) A regular space X is cosmic [63, p. 25] if X has a countable network.
(34) A regular space X is a σ-space [42, p. 446] if X has a σ-discrete (equivalently, σ-locally finite) 

network.
(35) A regular space X is an ℵ0-space (resp. ℵ-space) [42, p. 493] if X has a countable (resp. σ-locally 

finite) k-network (see (31)).
(36) A space X is a (strong) Σ-space [42, p. 450] if there exist a σ-discrete collection F and a cover C

of X by closed countably compact (compact) subsets, such that, whenever C ∈ C and C ⊆ U with U open, 
then C ⊆ F ⊆ U for some F ∈ F .

17 τ is the topology of X, and τc = {X \ U : U ∈ τ}.
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(37) A space X is a (strong) Σ�-space [63, p. 160] if there exist a σ-closure-preserving collection F and 
a cover C of X by countably compact (compact) subsets, such that, whenever C ∈ C and C ⊆ U with U
open, then C ⊆ F ⊆ U for some F ∈ F .

(38) A collection B =
⋃

n∈N
Bn of open subsets of a space X is a δθ-base [42, p. 477] if, whenever x ∈ U

with U open, there exist n ∈ N and B ∈ Bn such that
(i) 1 ≤ ord(x, Bn) ≤ ω;
(ii) x ∈ B ⊆ U .
(39) Suppose g is a g-function on a space X. Consider the following additional conditions:
(β) p ∈ g(n, xn) ⇒ {xn}n∈N has an accumulation point;
(wσ) if p ∈ g(n, yn), yn ∈ g(n, xn) ⇒ {xn}n∈N has an accumulation point;
(q) xn ∈ g(n, p) ⇒ {xn}n∈N has an accumulation point;
(wM) p ∈ g(n, zn), g(n, zn) ∩ g(n, yn) 
= ∅ and yn ∈ g(n, xn) ⇒ {xn}n∈N has an accumulation point.
Spaces satisfying the above additional conditions are called β-spaces [42, p. 475], wσ-spaces [29], q-spaces

[63, p. 35] and wM -spaces [63, p. 300] in turn.
(40) A space X is called an α-space [63, p. 27] if there is a g-function on X such that (i) x ∈ g(n, x); (ii) if 

y ∈ g(m, x), then g(m, y) ⊆ g(m, x). In [63, p. 27] an α-space is called a σ�-space. Note that the definition 
of an α-space is also given in [39, p. 104].

(41) A space X is called a γ-space [42, p. 491] if there is a g-function on X such that (i) {g(n, x) : n ∈ N}
is a neighborhood base of x; (ii) for every n ∈ N and x ∈ X there exists m ∈ N such that y ∈ g(m, x) implies 
g(m, x) ⊆ g(n, x).

(42) A space X is called of pointwise countable type [3] if for each x ∈ X, there is a compact set K
containing x such that K has a countable neighborhood base in X.

By the definitions, it is easy to check the following results:
(1) The following spaces are hereditary with respect to subspaces:
α-spaces, γ-spaces, developable spaces, first-countable spaces, Moore spaces, quasi-metric spaces, semi-

metrizable spaces, sn-metrizable spaces, so-metrizable spaces, spaces with a point-countable base, spaces 
with a σ-point-finite base, spaces with a uniform base, spaces with a δθ-base.

(2) The following spaces are hereditary with respect to closed subspaces:
Spaces of countable type, hemi-compact spaces, strict p-spaces.
(3) The following spaces are countably productive:
Spaces of countable type, spaces of pointwise countable type, spaces with a σ-point-finite base, 

sn-metrizable spaces, so-metrizable spaces.

5.2. Proofs

Our proofs may be different from the original proofs, because the purpose is to give concise proofs for 
the results.

Lemma 5.1. (1) A space X is weakly first-countable if and only if X is sequential and snf -countable [59, 
Lemma 2.1].

(2) A space X is first-countable if and only if X is Fréchet and snf -countable [61].

Proof. (1) If X is weakly first-countable, then X is sequential [87, 1.4]. Obviously, X is snf -countable.
Conversely, suppose X is sequential and snf -countable. Let P =

⋃
x∈X Px be an sn-network for X, and 

Px be countable for each x ∈ X. Then P is a weak base for X. In fact, if A is a subset of X such that for 
each x ∈ A there is Px ∈ Px with Px ⊆ A, then A is sequentially open in X. Since X is sequential, A is 
open. This shows that P is a weak base for X. Thus, X is weakly first-countable.

(2) If X is first-countable, then X is Fréchet [31, p. 113]. Obviously, X is snf -countable.
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Conversely, suppose X is Fréchet and snf -countable. By (1), X is weakly first-countable. Since every 
weakly first-countable Fréchet space is first countable [87, Theorem 1.10], X is first countable. �
Lemma 5.2. Let f : X → Y be a closed finite-to-one mapping. If X has one of the following properties, then 
so does Y :

(1) g-metrizable spaces [57, Remark 3.1, p. 409]; (2) sn-metrizable spaces [37, Theorem 3.4]; (3) semi-
metrizable spaces [95, Theorem 2(10)]; (4) q-spaces [95, Theorem 2(9)].

Proof. (1) In [91, Theorem 13], the author proved that the space Y is g-metrizable if and only if Y is weakly 
first-countable. Since X is weakly first-countable, Y is weakly first-countable by Corollary 3.13 in the body 
of the paper. Thus Y is g-metrizable.

(2) In [36, Theorem 1],18 the author proved that a space is an sn-metrizable space if and only if it is an 
ℵ-space and snf -countable. If X is sn-metrizable, then X is an ℵ-space and snf -countable. By Lemma 3.12
in the body of the paper and [55, Theorem 2.2], Y is an ℵ-space and snf -countable. So Y is sn-metrizable.

(3) By [25, Corollary 1.4], a space is semi-metrizable if and only if it is semi-stratifiable and first-countable. 
If X is semi-metrizable, then X is semi-stratifiable and first-countable. Since f is a closed finite-to-one 
mapping, by [25, Theorem 3.1] and Corollary 3.13 in the body of the paper, Y is semi-stratifiable and 
first-countable. Hence Y is semi-metrizable.

(4) Since X is a q-space, there is a g-function g on X satisfying additional condition (q), see item (39) 
in 5.1. Suppose y ∈ Y and f−1(y) = {x1, . . . , xn} for some n ∈ N. Obviously, f−1(y) ⊆

⋃
i≤n g(m, xi)

for each m ∈ N. Since f is a closed mapping, there is an open neighborhood h(m, y) of y such that 
f−1(h(m, y)) ⊆

⋃
i≤n g(m, xi). Define k : N × Y → τY by k(j, y) =

⋂
m≤j h(m, y), where τY is the topology 

for Y . It is easy to see that k is a g-function on Y . We will show that k satisfies additional condition (q). 
In fact, let {yj}j∈N be a sequence of Y satisfying yj ∈ k(j, y) for each j ∈ N. Then f−1(yj) ⊆

⋃
i≤n g(j, xi). 

Thus there are im ≤ n and zj ∈ f−1(yj) ∩ g(j, xim). We can assume that there is a strictly increasing 
sequence {ml}l∈N ⊆ N such that iml

= 1 for each l ∈ N. Therefore, zjl ∈ g(jl, x1) ⊆ g(l, x1). So {zjl}l∈N

has an accumulation point in X. It implies that {yjl}l∈N has an accumulation point in Y . Then Y is a 
q-space. �
Lemma 5.3. [58, Theorem] Let f : X → Y be a closed finite-to-one mapping. If X is a space of pointwise 
countable type, then so is Y .

Proof. Assume y ∈ Y . There is a compact subset K of X containing f−1(y) such that K has an open 
neighborhood base {Un}n∈N in X. Put V0 = X. Since f is closed, we can define, by induction, a sequence 
{Vn}n∈N of open subsets of X such that for each n ∈ N:

(1) f−1(y) ⊆ Vn ⊆ Vn−1 ∩ Un;
(2) f−1(f(Vn)) = Vn;
(3) Vn ∩K ⊆ Vn−1 ∩K.
In fact, let V1 = f−1(Y \ f(X \ U1)). Since f is closed, V1 is open. It is easy to check that the set V1

satisfies (1), (2) and (3). Assume that we have constructed V1, . . . , Vk satisfying (1), (2) and (3). Since 
f−1(y) ⊆ Vk ∩K and K is a normal subspace of X, there is an open subset Wk in K such that f−1(y) ⊆
Wk ⊆ clK(Wk) ⊆ Vk ∩K. Then there is an open subset Gk in X such that Wk = Gk ∩K. Thus, Gk ∩K =
Wk = clK(Wk) ⊆ Vk ∩K and f−1(y) ⊆ Gk ∩Uk+1 ∩Vk. Put Vk+1 = f−1(Y \ f(X \Gk ∩Uk+1 ∩Vk)). Hence 
Vk+1 is open in X and satisfies (1), (2) and (3). Therefore, the construction is completed.

Put H =
⋂

n∈N
Vn. Then f−1(y) ⊆ H ⊆ f−1(f(H)) and H ⊆

⋂
n∈N

Un. Since {Un}n∈N is an open 
neighborhood base of K in X, we have K =

⋂
n∈N

Un. Thus H =
⋂

n∈N
(Vn∩K). By (3), H =

⋂
n∈N

Vn ∩K. 

18 In [36] an sn-metrizable space is called a regular space which has a σ-locally finite cs-network, and an snf-countable space is 
called a universally csf-countable space.



Z. Tang et al. / Topology and its Applications 234 (2018) 26–45 43
Therefore, H is compact. Suppose that O is an open neighborhood of H in X. By [27, Corollary 3.1.5], 
there is n ∈ N such that Vn ∩K ⊆ O. Hence H ⊆ Vn ∩ K ⊆ O ∩ K. This shows that H has a countable 
neighborhood base in the compact subspace K. Since K has an open neighborhood base in X, by [27, 
Exercise 3.1.E(a)], H has a countable neighborhood base in X. It shows that Y is a space of pointwise 
countable type. �
Lemma 5.4. [97, Theorem 2, p. 7] Let f : X → Y be a closed finite-to-one mapping. If Y is a sequential 
space, then so is X.

Proof. Let σX be the sequential coreflection of the space X, s : σX → X be the identity mapping. 
Obviously, s is continuous. Put g = f ◦ s : σX → Y , then g is a finite-to-one continuous mapping. If F is 
a closed set of σX, g(F ) is a closed set of Y . Otherwise, g(F ) = f(F ) is not sequentially closed in Y since 
Y is sequential. Thus, there are a sequence S ⊆ F and y ∈ Y such that f(S) converges to y with y /∈ f(F ). 
By Lemma 3.11 in the body of the paper, f is a sequentially quotient mapping, we can assume that S is 
a convergent sequence. Since F is sequentially closed in σX, y ∈ F , the limit point of S is contained in F . 
Then y ∈ f(F ), which is a contradiction. It implies that g is a closed mapping. Hence g is a perfect mapping. 
According to [27, Propersiton 3.7.5], s is a perfect mapping. So X is a sequential space. �
Lemma 5.5. [54, Theorem 1] Let f : X → Y be a quasi-perfect mapping. If Y is a q-space (resp. β-space, 
wγ-space, wσ-space, wM -space), then so is X.

Proof. We need only to consider the case of wγ-space, the others are similar.
Let Y be a wγ-space, there is a wγ-function g on Y . Define a function h : N × X → τX by h(n, x) =

f−1(g(n, f(x))), where τX is the topology for X. Then h is a g-function on X. Suppose that bn ∈ h(n, c), 
and an ∈ h(n, bn), then f(bn) ∈ g(n, f(x)), and f(an) ∈ g(n, f(bn)). Since Y is a wγ-space, the sequence 
{f(an)}n∈N has an accumulation point. Thus, the family {{f(an)}}n∈N is not locally finite. Since f is a 
quasi-perfect mapping, {{an}}n∈N is not a locally finite family. Therefore, the sequence {an}n∈N has an 
accumulation point. The proof is completed. �

A mapping f : X → Y is Lindelöf if, for every y ∈ Y , f−1(y) is a Lindelöf subset in X.

Lemma 5.6. [98, Theorem 3] Let f : X → Y be a closed Lindelöf mapping. If Y is a weakly θ-refinable space, 
then so is X.

Proof. Suppose U is an arbitrary open cover of X. For each y ∈ Y , since f−1(y) is Lindelöf, there is a 
countable subset {Uyi}i∈N of U such that f−1(y) ⊆

⋃
i∈N

Uyi = Uy. Since f is a closed mapping, according to 
[27, Theorem 1.4.13], there is an open set Wy of Y such that f−1(y) ⊆ f−1(Wy) ⊆ Uy. Clearly, {Wy : y ∈ Y }
is an open cover of Y . Since Y is a weakly θ-refinable space, there is an open refinement L =

⋃
j∈N

Lj

of {Wy : y ∈ Y } such that for each y ∈ Y , there is m ∈ N satisfying 1 ≤ ord(Lm, y) < ω, where 
ord(Lm, y) = |{L ∈ Lm : y ∈ L}|. Let Lj = {Ljγ : γ ∈ Γj}, and Tj = {f−1(Ljγ) : Ljγ ∈ Lj}. Then 
T =

⋃
j∈N

Tj is an open cover of X. For each Ljγ , take Wy(jγ) such that Ljγ ⊆ Wy(jγ). Thus, f−1(Ljγ) ⊆
f−1(Wy(jγ)) ⊆ Uy(jγ) =

⋃
i∈N

Uy(jγ)i. Put Fji = {f−1(Ljγ) ∩ Uy(jγ)i : γ ∈ Γj}. Then F =
⋃

j,i∈N
Fji is an 

open refinement of U . For every x ∈ X, set f(x) = y, then there is m ∈ N satisfying 1 ≤ ord(Lm, y) < ω. 
Since x ∈ f−1(Ljγ) ∩ Uy(jγ)i for some j, i, γ, it follows that y ∈ Ljγ . Therefore, 1 ≤ ord(Fm, x) < ω. It 
implies 1 ≤ ord(Fmi, x) < ω for every i ∈ N. Thus X is a weakly θ-refinable space. �
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