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The multiplication of a semitopological (quasitopological) group G is called sequen-
tially continuous if the product map of G ×G into G is sequentially continuous. In 
this paper, we mainly consider the properties of semitopological (quasitopological) 
groups with sequentially continuous multiplications and three-space problems in 
quasitopological groups. It is showed that (1) every snf -countable semitopological 
group G with the sequentially continuous multiplication is sof -countable; (2) if G
is a sequential quasitopological group with the sequentially continuous multiplica-
tion, then G contains a closed copy of Sω if and only if it contains a closed copy 
of S2, which give a partial answer to a problem posed by R.-X. Shen; (3) let G be 
a quasitopological group with the sequentially continuous multiplication, then the 
following are equivalent: (i) G is a sequential α4-space; (ii) G is Fréchet; (iii) G is 
strongly Fréchet; (4) (MA+¬CH) there exists a non-metrizable, separable, normal 
and Moore quasitopological group; (5) some examples are constructed to show that 
metrizability, first-countability and second-countability are not three-space proper-
ties in the class of quasitopological groups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recall that a paratopological group G is a group endowed with a topology such that the multiplication of 
G is jointly continuous. A semitopological group G is a group endowed with a topology such that the multipli-
cation of G is separately continuous. A topological group (resp., quasitopological group) is a paratopological 
group (resp., semitopological group) G such that the inversion of G is continuous.
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As a generalization of topological groups, it is natural to consider which results valid for topological 
groups can be extended to semitopological groups or quasitopological groups [6]. Unfortunately, since the 
multiplication of a quasitopological group need not be continuous, some famous theorems of topological 
groups are not valid in quasitopological groups. For example, Comfort and Ross [11] proved that the product 
of an arbitrary family of pseudocompact topological groups is pseudocompact. However, C. Hernández 
and M. Tkachenko [21] constructed two pseudocompact quasitopological groups whose product fails to be 
pseudocompact. So it is suitable to consider a subclass of semitopological (quasitopological) groups.

The multiplication of a semitopological (quasitopological) group G is called sequentially continuous if 
the product map of G ×G into G is sequentially continuous. It is equivalent to the condition that anbn → e

whenever an → e and bn → e, where e is the neutral element of the group G. Since the multiplication of a 
paratopological group G is continuous, it is sequentially continuous. Therefore, this subclass of semitopo-
logical (resp., quasitopological) groups contains paratopological (resp., topological) groups. In Section 3, 
we mainly consider semitopological groups with sequentially continuous multiplications. Some properties of 
this subclass of semitopological groups are obtained. We prove that every snf -countable semitopological 
group with the sequentially continuous multiplication is sof -countable. We also obtain some corollaries of 
this result.

In Section 4, the properties of quasitopological groups with sequentially continuous multiplications are 
discussed. It was proved in [31] that a topological group contains a (closed) copy of Sω if and only if it 
contains a (closed) copy of S2. R.-X. Shen pointed that there is a quasitopological group [35, Example 3.9]
containing a closed copy of S2. However, the quasitopological group contains no closed copy of Sω. Therefore, 
the following problem was posed.

Problem 1.1. [35, Problem 3.11] Let G be a paratopological (quasitopological) group containing a closed 
copy of Sω. Must G contain a closed copy of S2?

We prove that if G is a sequential quasitopological group with the sequentially continuous multiplication, 
then G contains a closed copy of Sω if and only if it contains a closed copy of S2, which give a partial answer 
to Problem 1.1 for quasitopological groups. We also prove that every Fréchet quasitopological group with 
the sequentially continuous multiplication is strongly Fréchet. These results improve some relevant results 
in topological groups. At the end of this section, we construct under MA+¬CH a non-metrizable, separable, 
normal and Moore quasitopological group.

Let P be a (topological, algebraic, or mixed nature) property. We say that P is a three-space prop-
erty if whenever a closed invariant subgroup N of a topological group G and the quotient group G/N

have P, so does G. Similarly one defines a three-space property in paratopological or quasitopological or 
semitopological groups. Three-space problems in topological groups are considered by many authors. The 
list of three-space properties in topological groups is quite long, it includes compactness, local compactness, 
pseudocompactness, precompactness, metrizability (first-countability), second-countability, connectedness, 
completeness, etc (see [6,9,10,12,27,38]). There are several papers which contain some results related to the 
three-space problem in the class of paratopological groups or semitopological groups (see [15,33,34,39]). 
Much less is known about three-space properties in quasitopological groups. Connectedness [39] and separa-
bility [15] are three-space properties in semitopological groups. It was pointed in [39] that compactness and 
local compactness are not three-space properties in quasitopological groups. M. Fernández and I. Sánchez 
showed that being a topological group is not a three-space property in the class of quasitopological groups 
[15, Example 2.9].

In Section 5, we continue the study of the three-space properties in the class of quasitopological groups. 
Some examples are constructed to show that metrizability, first-countability and second-countability are 
not three-space properties in the class of quasitopological groups.
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2. Preliminaries

Let X be a space. For every P ⊆ X, the set P is a sequential neighborhood of x in X if every sequence 
converging to x is eventually in P . The set P is a sequentially open subset of X if P is a sequential 
neighborhood of each point in P . The set P is a sequentially closed subset of X if X \ P is sequentially 
open. A space X is said to be a sequential space [16] if each sequentially open subset is open in X. For each 
space (X, τ) the sequential coreflection [17] of (X, τ), denoted (X, στ ) or σX, is given by U ∈ στ if and only 
if U is sequentially open in (X, τ). As it is well known, σX is a sequential space [17, p. 52]; also, X and 
σX have the same convergent sequences [8, p. 678]. A topological space X is called a Fréchet space [16] if 
for any subset A ⊆ X and x ∈ A, there is a sequence in A converging to x in X. Every Fréchet space is 
sequential.

Let X be a space and x ∈ X. Suppose that P is a family of subsets in X. The family P is called a 
network at x if x ∈

⋂
P and for every open neighborhood U of x in X, there exists P ∈ P such that 

P ⊆ U .

Definition 2.1. Let P =
⋃

x∈X Px be a cover of a space X such that for each x ∈ X, (a) Px is a network 
at x in X; (b) if U, V ∈ Px, then W ⊆ U ∩ V for some W ∈ Px.

(1) The family P is called an sn-network [25] for X if each element of Px is a sequential neighborhood 
of x in X for each x ∈ X. X is called snf -countable [25] if X has an sn-network P such that each Px is 
countable. A regular space X is called sn-metrizable [18] if X has a σ-locally finite sn-network.

(2) The family P is called an so-network [25] for X if each element of Px is a sequentially open in X
for each x ∈ X. X is called sof-countable [25] if X has an so-network P such that each Px is countable. 
A regular space X is called so-metrizable [18] if X has a σ-locally finite so-network.

(3) The family P is called a weak base [2] for X if for every A ⊆ X, the set A is open in X whenever 
for each x ∈ A there exists P ∈ Px such that P ⊆ A. X is called weakly first-countable [2] if X has a weak 
base P such that each Px is countable.

A space X is weakly first-countable if and only if X is sequential and snf -countable [25,37].

All spaces are Hausdorff unless stated otherwise. We denote by N, Q, R, ω and c the set of all positive 
integers, the set of all rational numbers, the set of all real numbers, the first infinite ordinal and the 
cardinality of the continuum, respectively. The neutral element of a group is denoted by e. Readers may 
consult [6,14,19] for notation and terminology not given here.

3. Some properties of semitopological groups with sequentially continuous multiplications

In this section, we discuss some properties of semitopological groups with sequentially continuous multi-
plications.

Let X be an snf -countable space. Then it is easy to see that X has an sn-network {Vn(x) : x ∈ X, n ∈ N}
such that the following conditions are satisfied for each x ∈ X:

(1) each Vn(x) is a sequential neighborhood of x;
(2) {Vn(x) : n ∈ N} is a network at x;
(3) Vn+1(x) ⊆ Vn(x) for each n ∈ N.
Therefore, we will always assume that an sn-network of an snf -countable topological space satisfies the 

above conditions.

Lemma 3.1. [28, Lemma 2.3] Suppose that {Un : n ∈ N} is a decreasing countable network at x in X and 
W is a sequential neighborhood of x, then there exists n0 ∈ N such that Un0 ⊆ W .

The proof of the following lemma is direct.
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Lemma 3.2. Let G be an snf -countable semitopological group. Suppose that {Vn(x) : x ∈ G, n ∈ N} is an 
sn-network in G. For each x ∈ G and n ∈ N, put Wn(x) = x · Vn(e). Then {Wn(x) : n ∈ N, x ∈ G} is an 
sn-network in G.

Lemma 3.3. Let G be an snf -countable semitopological group with the sequentially continuous multiplication. 
Suppose that {Vn(x) : x ∈ G, n ∈ N} is an sn-network in G. For each x ∈ G and n ∈ N, put Wn(x) =
x · Vn(e) · Vn(e). Then {Wn(x) : n ∈ N, x ∈ G} is an sn-network in G.

Proof. By Lemma 3.2, we can assume that Vn(x) = x · Vn(e) for each x ∈ G and n ∈ N. We will show 
that {Wn(e) : n ∈ N} is an sn-network at e in G. Actually, for each n ∈ N there exists m ∈ N such that 
Wm(e) ⊆ Vn(e). Assuming the converse, take xm ∈ Wm(e) \ Vn(e) for each m ∈ N, and let xm = ambm
where am, bm ∈ Vm(e). Since {Vn(e) : n ∈ N} is an sn-network at e in G, it follows that am → e and 
bm → e. Therefore, xm = ambm → e by the sequentially continuous multiplication of G. However, Vn(e) is a 
sequential neighborhood of e in G, which is a contradiction. It shows that {Wn(e) : n ∈ N} is an sn-network 
at e in G, and {Wn(x) : n ∈ N, x ∈ G} is an sn-network in G by Lemma 3.2. �

The following theorem is the main result of this section.

Theorem 3.4. Every snf -countable semitopological group G with the sequentially continuous multiplication 
is sof-countable.

Proof. Let {Vn(x) : x ∈ G, n ∈ N} be an sn-network in G. For each x ∈ G and n ∈ N, we may assume 
that Vn(x) = x · Vn(e), by Lemma 3.2. Let Un = {x ∈ Vn(e) : x · Vk(e) ⊆ Vn(e) for some k ∈ N}. 
Obviously, e ∈ Un ⊆ Vn(e). Next we show that Un is sequentially open in G. Indeed, take any y ∈ Un, then 
y ·Vk(e) ⊆ Vn(e) for some k ∈ N. By Lemmas 3.1 and 3.3, it is easy to see that there exists m ∈ N such that 
y · (Vm(e) ·Vm(e)) ⊆ y ·Vk(e). Hence (y ·Vm(e)) ·Vm(e) ⊆ Vn(e), which implies that Vm(y) = y ·Vm(e) ⊆ Un. 
Since Vm(y) is a sequential neighborhood of y, Un is a sequential neighborhood of y. Therefore, the set Un

is sequentially open in G. It follows that {Un : n ∈ N} is an so-network at e. Then G is sof -countable. �
Remark 3.5. F. Lin in [24] proved that every snf -countable paratopological group G is sof -countable, and 
posed the following question: let G be an snf -countable semitopological group or a quasitopological group. 
Is G sof -countable? Liu in [28] gave a negative answer to the question by constructing a Hausdorff weakly 
first-countable quasitopological group which is not sof -countable. It shows that the multiplication of G
being sequentially continuous in Theorem 3.4 can not be omitted.

As immediate consequences we obtain the following corollaries, which improve the relevant results in [24].

Corollary 3.6. Every sn-metrizable semitopological group G with the sequentially continuous multiplication 
is so-metrizable.

Proof. Since G is sn-metrizable, it is easy to see that G is snf -countable. By Theorem 3.4, G is 
sof -countable. According to [26, Proposition 2.17], G is so-metrizable. The proof is completed. �
Corollary 3.7. If G is a weakly first-countable semitopological group G with the sequentially continuous 
multiplication, then G is a first-countable paratopological group.

Proof. Since a weakly first-countable space is snf -countable and sequential [25,37], it follows from Theo-
rem 3.4 that G is sof -countable. Then G is first-countable because G is a sequential space.
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We will show G is a paratopological group. Indeed, let {Vn : n ∈ N} be a decreasing open neighborhood 
base at e. By the proof of Lemma 3.3, for every n ∈ N, there is m ∈ N such that V 2

m ⊆ Vn. Hence, the 
multiplication of G is jointly continuous. So G is a paratopological group. �
Corollary 3.8. [32] If G is a weakly first-countable topological group, then G is metrizable.

4. Some properties of quasitopological groups with sequentially continuous multiplications

First of all, we will construct a quasitopological group with the sequentially continuous multiplication 
which is not a topological group.

Suppose that X is a topological space, and G is an Abelian group. Let XG be the space of all mappings of 
G to X, with the pointwise convergence topology (which in this case coincides with the Tychonoff product 
topology of XG). For a ∈ G, f ∈ XG and each x ∈ G, put s(a, f)(x) = sa(f)(x) = f(x − a). Then 
sa(f) ∈ XG, and s is a mapping of G ×XG to XG called the G-shift on XG. The mapping sa : XG → XG

is called the a-shift of XG, or the shift of XG by a. For each f ∈ XG, the subspace s(G × {f}) of XG is 
called the orbit of f under the shift s, or simply the orbit of f . A mapping f : G → X is called a Korovin 
mapping [6, p. 124] and the orbit of f is said to be a Korovin orbit [6, p. 124] if for every countable subset 
M of G and every mapping h : M → X, there exists a ∈ G such that sa(f)|M = h. For each f ∈ XG and 
g ∈ G, put gf = sg(f). We can define a group multiplication ∗ on the orbit of f , Gf = {gf : g ∈ G} making

(g1f) ∗ (g2f) = (g1g2)f.

Then the mapping k : G → Gf given by k(g) = gf is a homomorphism. In the case of a Korovin mapping, 
the homomorphism k is one-to-one. An important property of a Korovin mapping f is that the image of 
Gf under the natural projection of XG onto XB is the whole XB , for any countable subset B ⊆ G [6, 
Proposition 2.4.14].

We have following example by modifying Example 9 in [21].

Example 4.1. There exists a pseudocompact quasitopological group with the sequentially continuous multi-
plication which is not a topological group.

Proof. Let G be a Boolean group of the cardinality c and X an infinite compact metrizable space. Then 
|X| ≤ c by [14, Theorem 3.1.29].

By [6, Theorem 2.4.13], there exists a Korovin mapping f : G → X. Let K = Gf be the Korovin orbit 
in XG. Then K is a quasitopological group which fails to be a topological group by [6, Proposition 2.4.14]. 
According to [6, Theorem 2.4.15], K is pseudocompact.

We will show that the multiplication of K is sequentially continuous. It is enough to show that any 
countably infinite subspace of K is discrete.

Claim: Every countable infinite subspace of K is discrete.
Indeed, take an arbitrary countably infinite subset K1 of K. Then there is a countably infinite subset H

of G such that K1 = Hf . Without loss of generality, we can assume that H is a subgroup of G. Since X is a 
non-discrete metrizable space, there exists a sequence {bn}n∈N of pairwise distinct elements of X converging 
to a ∈ X. Let Y = {a} ∪ {bn : n ∈ N} and h be a one-to-one mapping of H to Y \ {a}. Since f is a Korovin 
mapping, there is c ∈ G such that sc(f)|H = h. Therefore, sc(f)(e) = h(e), i.e., f(e − c) = f(c) = h(e) = bn
for some n ∈ N. Since bn is an isolated point in Y , there is an open neighborhood W of bn such that 
Y ∩ W = {bn}. Then U = {x ∈ XG : x(c) ∈ W} is open in XG and f ∈ U . Take an arbitrary element 
b ∈ H \ {e}. Since h is one-to-one, we have sb(f)(c) = f(c − b) = f(b − c) = sc(f)(b) = h(b) 	= h(e) = bn. 
Thus, sb(f) /∈ U . Clearly, each element of Hf has the form sb(f) for some b ∈ H. Therefore, U ∩Hf = {f}. 
Since f plays the role of the neutral element of K, the subgroup Hf of K is discrete.
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By Claim, K has no non-trivial convergent sequence. Thus the multiplication of K is sequentially con-
tinuous. �

Let G = (R2, +) be the group with the usual pointwise addition. Clearly, G is an Abelian group. For 
each p = (x1, x2) ∈ R2, ε > 0, let

U(p, ε) = {p} ∪ {(x, y) : 0 < |x− x1| < ε, |(y − y1)/(x− x1)| < ε}.

We define a topology on G by giving a local base {U(p, ε) : ε > 0} at each point p ∈ G. It is called 
the bowtie topology [19] on G. We denote by D the bowtie topology on G. (G, D) is a completely regular 
quasitopological group [5].

Example 4.2. There exists a completely regular quasitopological group G such that the multiplication of G
is not sequentially continuous.

Proof. Consider the additive group G = R2 endowed with the bowtie topology D. Then (G, D) is 
a completely regular first-countable quasitopological group. Clearly, the sequences {( 1

n , 
1
n2 )}n∈N and 

{(− 1
n , 

1
n2 )}n∈N converge to e = (0, 0). However, the sequence {( 1

n , 
1
n2 ) + (− 1

n , 
1
n2 )}n∈N is divergent. Thus 

the multiplication of G is not sequentially continuous. �
If G is a quasitopological group, it is easy to check that σG is a quasitopological group. The following 

theorem improve the result in [24, Theorem 4.4].

Theorem 4.3. Let G be an snf -countable quasitopological group with the sequentially continuous multiplica-
tion. Then σG is a topological group.

Proof. It follows from Theorem 3.4 that G is sof -countable. Let {Vn : n ∈ N} be a decreasing so-network 
at e in G. Then {Vn : n ∈ N} is a neighborhood base at e in σG. In fact, let U be an open neighborhood of 
e in σG, then U is a sequentially open neighborhood of e in G. By Lemma 3.1 there exists n ∈ N such that 
Vn ⊆ U . Since G and σG have the same convergent sequences [8, p. 678], σG is a quasitopological group 
with the sequentially continuous multiplication. By Corollary 3.7, σG is a topological group. �

Let Sκ be the quotient space obtained by identifying all limit points of the topological sum of κ many 
convergent sequences. Sω is called the sequential fan. The Arens’ space [14, Example 1.6.19] S2 = {∞} ∪{xn :
n ∈ N} ∪ {xn(m) : m, n ∈ N} is defined as follows: each xn(m) is isolated; a basic neighborhood of xn is 
{xn} ∪ {xn(m) : m > k} for some k ∈ N; a basic neighborhood of ∞ is {∞} ∪ (

⋃
{Vn : n > k}) for some 

k ∈ N, where Vn is a neighborhood of xn.
It was proved in [31] that a topological group contains a (closed) copy of Sω if and only if it contains a 

(closed) copy of S2. For quasitopological groups, we prove the following result which give a partial answer 
to Problem 1.1.

Theorem 4.4. Let G be a sequential quasitopological group with the sequentially continuous multiplication. 
Then G contains a closed copy of Sω if and only if it contains a closed copy of S2.

Proof. Sufficiency. Since G is a quasitopological group, without loss of generality, let A = {e} ∪{xn : n ∈ N} ∪
{xn(m) : m, n ∈ N} be a closed copy of S2 in G, where e is the neutral element of G. For each n, m ∈ N, 
let yn(m) = x−1

n xn(m), and put Sn = {yn(m) : m ∈ N}. Then yn(m) → e as m → ∞ for each n ∈ N. For 
each m, F = {n : Sm ∩ Sn is infinite} is finite (otherwise, pick distinct x−1

ni
xni

(mi) ∈ Sm ∩ Sni
for ni ∈ F

with ni < ni+1, then x−1
n xni

(mi) → e and xni
→ e. Hence xni

(mi) → e by the sequentially continuous 

i
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multiplication of G, a contradiction). Without loss of generality, we can assume Si ∩ Sj = ∅ if i 	= j. Let 
B = {e} ∪ {yn(m) : n, m ∈ N}.

Claim 1: B is a closed copy of Sω in G.
Suppose B is not closed in G. Since G is sequential, there are x ∈ B \B and an infinite subset {yni

(mi) :
i ∈ N} of B such that yni

(mi) → x as i → ∞ and ni < ni+1. Since A is closed in G, there exists an open 
neighborhood V of e such that V x meets {xn(m) : m ∈ N} for at most one n. By the sequentially continuous 
multiplication of G and xn → e, we have xni

yni
(mi) → x. Since V x is an open neighborhood of x, there 

are infinitely many i ∈ N with xni
(mi) ∈ V x, a contradiction.

If f : N → N, then C = {yn(m) : m ≤ f(n), n ∈ N} does not have an accumulation point. Otherwise, if a
is an accumulation point of C, there exist x ∈ C \ {a} \ (C \ {a}) and an infinite subset {yni

(mi) : i ∈ N}
of C \ {a} such that yni

(mi) → x as i → ∞ and ni < ni+1. Let V be an open neighborhood of the neutral 
element e such that |V x ∩ {xn(m) : m ≤ f(n), n ∈ N}| ≤ 1. By the sequentially continuous multiplication 
of G and xn → e, we have xni

yni
(mi) → x. Since V x is an open neighborhood of x, there are infinitely 

many i ∈ N with xni
(mi) ∈ V x, which is a contradiction. Hence B is a copy of Sω.

Necessity. Let A = {e} ∪{yn(m) : m, n ∈ N} be a closed copy of Sω in G, for each n, yn(m) → e as m → ∞. 
Let Un be an open neighborhood of y1(n) for each n with Ui ∩ Uj = ∅ if i 	= j. Let xn(m) = y1(n)yn+1(m)
for each n, m ∈ N. For any n ∈ N, we have xn(m) → y1(n) as m → ∞. Without loss of generality, we can 
assume {xn(m) : m ∈ N} ⊆ Un. Let B = {e} ∪ {y1(n) : n ∈ N} ∪ {xn(m) : m, n ∈ N}.

Claim 2: B is a closed copy of S2 in G.
Suppose B is not closed. Then there exist x ∈ B \ B and an infinite subset {xni

(mi) : i ∈ N} of B such 
that xni

(mi) → x as i → ∞ and ni < ni+1. Since A is closed, there is a neighborhood V of e such that 
V x ∩ (A \ {x}) = ∅. Note that G is a quasitopological group and y1(n) → e, we have (y1(n))−1 → e. By the 
sequentially continuous multiplication of G, yni+1(mi) = (y1(ni))−1xni

(mi) → x as i → ∞. Since V x is a 
neighborhood of x, V x contains infinitely many elements of A, which is a contradiction.

If f : N → N, similarly as in the proof of Claim 1, {xn(m) : n ≥ k, m ≤ f(n)} is closed for each k ∈ N. 
Hence B is a copy of S2. �

A countable collection {Sn : n ∈ N} of convergent sequences in a space X is called a sheaf (with a 
vertex x) if each sequence Sn converges to the same point x ∈ X. A space X is called an α4-space [30], if 
for every point x ∈ X and each sheaf {Sn : n ∈ N} with the vertex x, there exists a sequence converging to 
x which meets infinitely many sequences Sn.

A space X is called a strongly Fréchet space [36] if for every decreasing sequence {An}n∈N of subsets in 
X with x ∈

⋂
n∈N

An, there is xn ∈ An for each n ∈ N such that the sequence {xn}n∈N converges to x. It is 
known that a space is strongly Fréchet if and only if it is a Fréchet α4-space [3,4]. Therefore, the following 
result is obtained.

Theorem 4.5. Let G be a quasitopological group with the sequentially continuous multiplication. Then the 
following conditions are equivalent:

(1) G is a sequential α4-space;
(2) G is Fréchet;
(3) G is strongly Fréchet.

Proof. (1) ⇒ (2). Let [A] be the set of all limit points of sequences in A for each A ⊆ G. Suppose G is not 
Fréchet. There is a subset A of G such that [A] 	= A. If [A] is closed in G, then A ⊆ [A] = [A] ⊆ A, which 
is a contradiction. Hence, [A] is not closed in G. Since G is sequential, [A] is not sequentially closed. That 
is [[A]] 	= [A]. Thus there is x ∈ [[A]] \ [A]. By translating A through the multiplication by x−1, we may 
assume x = e without loss of generality.
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Let {xn}n∈N be a sequence of points of [A] converging to e. For each xn, let {xn(j)}j∈N be a sequence 
of points of A converging to xn. Since the multiplication of G is separately continuous, {x−1

n xn(j)}j∈N

converges to e for each n ∈ N. Since G is an α4-space, it is possible to pick nk, jk for each k ∈ N such 
that {x−1

nk
xnk

(jk)}k∈N converges to e and nk < nk+1. By sequential continuity of the multiplication of G, 
xnk

(jk) = xnk
x−1
nk

xnk
(jk) → e as k → ∞, contradicting the assumption that e /∈ [A]. Therefore, G is 

Fréchet.
(2) ⇒ (1). It is enough to show that for each sheaf {Sn : n ∈ N} with the vertex e, there exists a 

sequence converging to e which meets infinitely many sequences Sn. For each n ∈ N, let Sn = {xn(j)}j∈N, 
the sequence {x1(n)xn+1(j)}j∈N converges to x1(n). Put A =

⋃
n∈N

{x1(n)xn+1(j) : j ∈ N}, then e ∈ A. 
By hypothesis there is a sequence S in A converging to e. Since G is Hausdorff, S intersects with infinitely 
many sequences {x1(n)xn+1(j)}j∈N. Let S = {x1(ni)xni+1(ji)}i∈N where each ni < ni+1. Since G is a 
quasitopological group and {x1(n)}n∈N converges to e, (x1(ni))−1 → e as i → ∞. By the sequentially 
continuous multiplication of G, xni+1(ji) = (x1(ni))−1x1(ni)xni+1(ji) → e as i → ∞.

Since a space is strongly Fréchet if and only if it is a Fréchet α4-space [3,4], by (1) ⇔ (2), (3) ⇔ (2) is 
obvious. �

It was showed in [32, Example 4] that neither (1) ⇒ (2) nor (2) ⇒ (1) in Theorem 4.5 can be extended 
to quasitopological groups.

Theorem 4.6. Let G be a Fréchet quasitopological group with the sequentially continuous multiplication. If 
M is a first-countable space, then G ×M is Fréchet.

Proof. Take any subset A of G ×M and any point (x, y) ∈ A. Let p be the natural projection of G ×M

onto G. Fix a decreasing countable base {Un : n ∈ N} of the point y in M , and put Bn = p((G × Un) ∩A)
for each n ∈ N. Clearly, x ∈ Bn. We also have Bn+1 ⊆ Bn, since Un+1 ⊆ Un. By Theorem 4.5, there exists 
a sequence {bn}n∈N in G converging to x such that bn ∈ Bn for each n ∈ N. Hence, there is cn ∈ Un such 
that (bn, cn) ∈ A for each n ∈ N. Then the sequence {(bn, cn)}n∈N converges to the point (x, y). �

Let (X, τ) be a space. A function g : N × X → τ is called a g-function on X if, for every x ∈ X and 
n ∈ N, x ∈ g(n + 1, x) ⊆ g(n, x). A space X is called a q-space [29] if there is a g-function on X satisfying 
for every sequence {xn}n∈N and a point p of X if xn ∈ g(n, p) for each n ∈ N, then the sequence {xn}n∈N

has an accumulation point. A space X is called a β-space [19, p. 475] if there is a g-function on X satisfying 
for every sequence {xn}n∈N and a point p of X if p ∈ g(n, xn) for each n ∈ N, then the sequence {xn}n∈N

has an accumulation point.
Since every first-countable quasitopological group G is semi-metrizable (see [22] or [35]), G is a β-space. 

Every first-countable space is a q-space. However, there are many countably compact topological groups 
which are not first-countable (see [6, Example 1.6.39 a)]). Since countably compact spaces are q-spaces, the 
following result generalizes [22, Theorem 2.5].

Theorem 4.7. Let G be a quasitopological group. If G is a q-space, then G is a β-space.

Proof. Since G is a q-space, there is a g-function g : N ×G → τ such that xn ∈ g(n, p) for each n ∈ N implies 
{xn}n∈N has an accumulation point. Define g1 : N ×G → τ by g1(n, x) = xg(n, e) for each n ∈ N and x ∈ G, 
then g1 is a g-function on G. If p ∈ g1(n, xn) for each n ∈ N, that is p ∈ xng(n, e), thus (xn)−1p ∈ g(n, e). 
By the definition of q-spaces, {(xn)−1p}n∈N has an accumulation point. Since G is a quasitopological group, 
the inversion and translations of G are continuous. Therefore, {xn}n∈N has an accumulation point. Then G
is a β-space. �
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To conclude this section, we construct a non-metrizable, separable, normal and Moore quasitopological 
group under MA+¬CH.

Let τ, τ1 be two topologies on X. We say that τ is regular with respect to τ1 if for every U ∈ τ and x ∈ U

there is V ∈ τ such that x ∈ V ⊆ V τ1 ⊆ U [1].

Lemma 4.8. [1] (MA) Let (X, τ) be a topological space which is the union of less than continuum compact 
subsets. If there is a weaker metric separable topology τ1 such that τ is regular with respect to τ1, then Xn

is normal for every n ∈ N.

Example 4.9. (MA+¬CH) There exists a non-metrizable, separable, normal and Moore quasitopological 
group.

Proof. Let κ be a cardinal such that ω < κ < c. Take a subset X of R such that |X| = κ and Q ⊆ X. 
Without loss of generality, we may assume that X is an additive subgroup of R. Let (G, D) be the bowtie 
space and G1 = Q ×X. Then (G1, D|G1) is a separable and Moore quasitopological group, see [35]. Clearly, 
(G1, D|G1) is not paracompact. It is easy to check that D|G1 is regular with respect to E|G1 , where E is the 
Euclidean topology on R2. By Lemma 4.8, (G1, D|G1) is normal. �

It is known that under CH every separable normal Moore space is metrizable [20]. Thus under CH 
every separable, normal, Moore quasitopological group is metrizable. Therefore the existence of a separable, 
normal, non-metrizable Moore quasitopological group is independent of the usual axioms of Set theory.

5. Three-space problems in quasitopological groups

In this section, we first prove that hereditarily disconnectedness is a three-space property in semitopo-
logical groups. We also construct three examples to show that some three-space properties in topological 
groups cannot be extended to quasitopological groups.

For a topological space X we denote by cx(X) the connected component of X containing x ∈ X. A space 
X is called hereditarily disconnected [14, p. 360] if cx(X) = {x} for each x ∈ X. For a semitopological group 
G we denote by c(G) the connected component of e and we call it briefly the connected component of G.

Proposition 5.1. Let G be a quasitopological group and N a closed normal subgroup of G. If both N and 
G/N are hereditarily disconnected, then so is G.

Proof. Let q : G → G/N be the canonical homomorphism. Assume that C is a connected subset in G. Then 
q(C) is a connected subset of G/N , so by our hypothesis, q(C) is a singleton. This means that C is contained 
in some coset xN . Since xN is hereditarily disconnected as well, we conclude that C is a singleton. Thus G
is hereditarily disconnected. �
Example 5.2. There exists a completely regular first-countable quasitopological group G with a closed in-
variant subgroup H such that G/H and H are second-countable metrizable spaces, but G is not metrizable.

Proof. Consider the additive group G = R2 endowed with the bowtie topology. Then G is a completely 
regular quasitopological group. Define f : G → R by f(x, y) = y for each (x, y) ∈ G. Clearly, f is a 
continuous open homomorphism from G onto R with its usual topology and H = kerf = R ×{0} carries the 
usual topology. According to [6, Theorem 1.5.3], G/H is topologically isomorphic to R. So both H and G/H

are second-countable metrizable spaces. However, G is not metrizable, since G is separable and contains an 
uncountable closed discrete subspace {0} ×R. �
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Remark 5.3. Obviously, Example 5.2 shows that metrizability is not a three-space property in quasitopo-
logical groups. It also shows that locally compact is not a three-space property. Clearly, both H and G/H

are locally compact spaces. However, G is not locally compact, since every Hausdorff locally compact semi-
topological group is a topological group [13] and G is not a topological group. M. Choban showed that if 
H is a closed invariant subgroup of a topological group G such that H is second-countable and G/H has a 
countable network, then G has a countable network as well [38]. This result was extended to paratopological 
groups in [15, Theorem 2.6]. Example 5.2 also shows that the result cannot be extended to quasitopological 
groups, even if H is a second-countable topological group, since the quasitopological group G does not have 
a countable network.

Example 5.4. There exists a completely regular quasitopological group G with a closed invariant subgroup 
H such that G/H and H are second-countable, but G is not first-countable.

Proof. Consider the additive group G = R2 endowed with the topology T ∗ [5, p. 112]. Then G is a completely 
regular quasitopological group. Let G1 = Q2 endowed with the subspace topology of G. Clearly, G1 is 
completely regular, and G1 is not first-countable by [5, Property 3.2]. Define f : G1 → Q by f(x, y) = x

for each (x, y) ∈ G1. It is easy to check that f is a continuous open homomorphism from G1 onto Q with 
its usual topology, and H = kerf = {0} × Q carries the discrete topology. Hence G1/H is topologically 
isomorphic to Q by [6, Theorem 1.5.3]. So both H and G1/H are second-countable spaces. However, G1 is 
not first-countable. �
Remark 5.5. Example 5.4 shows that neither first-countability nor second-countability is a three-space prop-
erty in quasitopological groups.

A.V. Arhangel’skǐı and V.V. Uspenskij proved that if a topological group G contains a closed locally 
compact subgroup N and the quotient space G/N is paracompact, then so is G [7, Theorem 2.2]. In other 
words, paracompactness is an inverse invariant in topological groups under continuous open homomorphisms 
with locally compact kernels. Moreover, the quotient homomorphism π : G → G/N is locally perfect, i.e., 
there exists a closed neighborhood P of the neutral element in G such that π|P is a perfect mapping 
[6, Theorem 3.2.2]. These facts cannot be extended to paratopological groups. Indeed, it is shown in [23]
that there exists a completely regular paratopological group G and an open continuous homomorphism f
of G onto a paracompact paratopological group H with locally compact fibers such that G is not locally 
paracompact and f is not locally perfect. The following example shows that the results on topological groups 
([7, Theorem 2.2] and [6, Theorem 3.2.2]) cannot be extended to quasitopological groups.

Example 5.6. There exists a completely regular quasitopological group G and an open continuous homo-
morphism f of G onto a paracompact quasitopological group H with locally compact fibers such that G is 
not locally paracompact and f is not locally perfect.

Proof. Consider the additive group G = R2 endowed with the bowtie topology D. Then G is a completely 
regular quasitopological group. Put Un = {(0, 0)} ∪{(x, y) ∈ R2 : n|y| < |x| < 1

n} for every n ∈ N. It is easy 
to see that {Un : n ∈ N} is a local base at the identity in (G, D).

Let us show that G is not locally paracompact. Since paracompactness is hereditary with respect to 
closed subsets, we only need to show that the closure Un of each basic open neighborhood Un of the neutral 
(0, 0) of G is not a paracompact subspace of G. Since (Q ×Q) ∩ Un is a countable dense subset of Un and 
({ 1

2n} ×R) ∩Un is a discrete closed subset of cardinality continuum in Un, it follows that Un is not normal 
by [14, Corollary 2.1.10]. Hence, Un is not a paracompact subspace of G. Thus G is not locally paracompact.

Define f : G → R by f(x, y) = x for each (x, y) ∈ G. Clearly, f is a continuous open homomorphism from 
G onto R with its usual topology, and N = kerf = {0} × R carries the discrete topology. Let H = R with 
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the usual topology. Obviously, H is paracompact and N is locally compact. Since G is a quasitopological 
group, all the fibers of f are locally compact.

We will show that f is not locally perfect. In fact, for each n ∈ N, the mapping f |Un
is not a perfect 

mapping, since 1
2n ∈ f(Un) and f−1( 1

2n ) ∩ Un is not compact. This completes the proof. �
It is well known that pseudocompactness and precompactness are three-space properties in topological 

groups.

Question 5.7. Is precompactness a three-space property in quasitopological groups?

Addendum In the first draft of the paper, the authors did not know whether pseudocompactness is a 
three-space property in quasitopological groups. The reviewer pointed out that pseudocompactness is not 
a three-space property in quasitopological groups. Let P be a three-space property in quasitopological 
groups. If G and H satisfy P, then G ×H satisfies P as well. Since [21, Example 8] gave pseudocompact 
quasitopological groups G and H such that G × H is not pseudocompact, pseudocompactness is not a 
three-space property in quasitopological groups.
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