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Abstract

We consider generalised metrisability and cardinal invariants in quasitopological groups. We construct
examples to show that some equalities of cardinal invariants in topological groups cannot be extended to
quasitopological groups.
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1. Introduction

All spaces are Hausdorff unless stated otherwise.
A paratopological group G is a group endowed with a topology such that the

multiplication of G is jointly continuous. A semitopological group G is a group
endowed with a topology such that the multiplication of G is separately continuous.
A topological group (respectively, quasitopological group) is a paratopological group
(respectively, semitopological group) G such that the inversion of G is continuous.

It is well known that a topological group is metrisable if and only if it is first-
countable [4, 8], and a paratopological group is quasimetrisable if and only if it
is first-countable [10, 11]. Recently, Li and Mou [9] and Shen [13] proved that
a quasitopological group is semimetrisable if and only if it is first-countable. The
authors in [14] discussed generalised metrisability of a special class of semi- and
quasitopological groups and three-space properties in quasitopological groups. In this
paper, we continue the study of quasitopological groups.

In Section 2, we consider generalised metrisability of quasitopological groups.
We prove: (a) a semimetrisable quasitopological group G admits an invariant
semimetric generating its topology if and only if G is balanced; (b) if H is a closed
subgroup of a first-countable quasitopological group G, then the quotient space
G/H is semimetrisable; and (c) the following properties are equivalent: (1) G is
a semimetrisable quasitopological group with respect to a continuous left-invariant
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semimetric, (2) G is a quasimetrisable quasitopological group with respect to a left-
invariant quasimetric, (3) G is a metrisable topological group.

In Section 3, we investigate cardinal invariants in quasitopological groups. It is
well known that cardinal functions behave much better on topological groups than on
completely regular spaces (see [3, Section 5.2]). We construct some examples to show
that some equalities of cardinal invariants in topological groups cannot be extended to
quasitopological groups.

We denote by N,Q,R and ω the set of all positive integers, the set of all rational
numbers, the set of all real numbers and the first infinite ordinal, respectively. The
neutral element of a group is denoted by e. Readers may consult [3, 5, 6] for notation
and terminology not given here.

2. Generalised metrisability in quasitopological groups

A function d : X × X → [0,∞) is called symmetric on the set X if, for each x, y ∈ X,
(i) d(x, y) = 0 if and only if x = y and (ii) d(x, y) = d(y, x). Define the set B(x, ε)
by B(x, ε) = {y ∈ X : d(x, y) < ε} for each x ∈ X and ε > 0. A space X is called
symmetrisable [1] if there is a symmetric d on X such that a subset U ⊆ X is open
if and only if, for each x ∈ U, there exists ε > 0 with B(x, ε) ⊆ U. A symmetrisable
space (X, d) is called a semimetrisable space [6, page 482] and d is called a semimetric
on X if, for each x ∈ X, the collection {B(x, ε) : ε > 0} forms a neighbourhood base of
x.

A quasimetric (respectively, semimetric) d(x, y) is called continuous if d(x, y) is
continuous with respect to both x and y; d(x, y) is left-continuous (respectively, right-
continuous) if d(x, ·) (respectively, d(·, y)) is continuous.

Let G be a group. A function d : G × G → [0,∞) is called left-invariant
(respectively, right-invariant) if d(x, y) = d(ax, ay) (respectively, d(x, y) = d(xa, ya)),
for any a, x, y ∈ G. A function d : G × G → [0,∞) is called invariant if d is
simultaneously left-invariant and right-invariant.

Lemma 2.1 [9, 13]. A quasitopological group is semimetrisable if and only if it is first-
countable.

By using the proof of [13, Theorem 3.1], we can complement Lemma 2.1 as follows.

Proposition 2.2. Every first-countable quasitopological group G admits a right-
invariant semimetric % and a left-invariant semimetric λ, both generating the original
topology of G.

Let G be a group. A subset A of G is said to be invariant [3, page 69] if xAx−1 = A,
for each x ∈ G. It is clear that all subsets of Abelian groups are invariant. A
semitopological group G is called balanced if it has a local base at the neutral element
e consisting of invariant sets. A balanced semitopological group is also called a group
with invariant basis.
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304 Z. Tang and S. Lin [3]

Theorem 2.3. A semimetrisable quasitopological group G admits an invariant
semimetric generating its topology if and only if G is balanced.

Proof. Suppose that % is an invariant semimetric on G that generates the topology of G.
For every n ∈ N, let Un = {x ∈G : %(e, x) < 1/n}. Then {Un : n ∈ N} is a neighbourhood
base at e in G. Since % is invariant, for any x ∈ Un and y ∈ G,

%(e, yxy−1) = %(y, yx) = %(e, x) <
1
n
,

and hence yxy−1 ∈ Un. It follows that yUny−1 = Un for all y ∈ G and n ∈ N. Thus the
family {Un : n ∈ N} is an invariant base for G at the neutral element e. Hence the group
G is balanced.

Conversely, suppose that the group G is balanced. Since G is first-countable, there
exists a family ξ = {Un : n ∈ N} of open, symmetric, invariant neighbourhoods of e in
G satisfying Un ⊆ Un+1 for each n ∈ N, such that ξ forms a local base for G at e. Define
a function d : G ×G→ [0,∞) by d(x, y) = inf{1/n : x−1y ∈ Un, n ∈ N}. It is easy to see
that d is symmetric on G. Moreover, the original topology on G coincides with the
topology generated by d. Finally, Un = yUny−1 for each y ∈ G, so d(e, yxy−1) = d(e, x)
for each x, y ∈ G, that is, d is invariant. �

The next proposition is an easy modification of the proof of [13, Theorem 3.1].

Proposition 2.4. Let G be a quasitopological group. If the neutral element e is a Gδ-
point in G, then there is a weaker symmetrisable topology on G.

Proof. Let {e} =
⋂

n∈N Un, where Un is an open neighbourhood of e for each n ∈ N.
Since G is a quasitopological group, we may assume that Un = U−1

n and Un ⊆ Un+1

for each n ∈ N. We will define a new topology by the function d : G ×G → [0,∞),
where d(x, y) = inf{1/n : x−1y ∈ Un, n ∈ N}. It is easy to see that d is symmetric
on G. Moreover, xUn+1 = B(x, 1/n) for each x ∈G and n ∈ N. Obviously, the topology
generated by d is weaker than the original topology on G. �

In general, semimetrisability of topological spaces is not preserved by open
continuous mappings. By Lemma 2.1, we have the following corollary.

Corollary 2.5. Suppose that f is an open continuous homomorphism of a
semimetrisable quasitopological group G onto a quasitopological group H. Then H is
also semimetrisable.

The next theorem is a generalisation of Corollary 2.5 and Lemma 2.1 to quotient
spaces of semimetrisable quasitopological groups.

Theorem 2.6. Let G be a quasitopological group. Then G is first-countable if and only
if the quotient space G/H is semimetrisable for every closed subgroup H of G.
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Proof. Suppose the quotient space G/H is semimetrisable for every closed subgroup
H of G. Put H = {e}. Then G/H = G is semimetrisable and so G is first-countable.

Conversely, suppose G is first-countable. By Proposition 2.2, there exists a right-
invariant semimetric d on G which generates the topology of G. For arbitrary points
x, y ∈ G, define a function % : G/H ×G/H → [0,∞) by

%(xH, yH) = inf{d(xh1, yh2) : h1, h2 ∈ H}.

Since d is right-invariant and H is a subgroup of G, we have %(xH, yH) = d(x, yH) ≥ 0
for all x, y ∈ G. The function % is symmetric: that is,

%(xH, yH) = d(x, yH) = inf{d(x, yh) : h ∈ H} = inf{d(xh−1, y) : h ∈ H}

= inf{d(y, xh−1) : h ∈ H} = d(y, xH) = %(yH, xH).

Since H is closed in G and d is a semimetric on G, we have %(xH, yH) = d(x, yH) = 0
if and only if x ∈ yH, that is, xH = yH.

We will show that % generates the topology of the quotient space G/H. For each
x ∈ G and ε > 0, let

Oε(x) = {y ∈ G : d(x, y) < ε} and Bε(xH) = {yH : y ∈ G, %(xH, yH) < ε}.

Denote by π the quotient mapping of G onto G/H, so that π(x) = xH for each x ∈ G.
By the definition of %, it is easy to check that π(Oε(x)) = Bε(xH) for all x ∈G and ε > 0.
Since the family {Oε(x) : ε > 0} forms a neighbourhood base at x in G and the mapping
π : G → G/H is continuous and open, we conclude that the family {Bε(xH) : ε > 0}
forms a neighbourhood base at xH in G/H for the original topology of the space G/H.
This completes the proof. �

Let (X, τ) be a space. A function g : N × X → τ is called a g-function on X if
x ∈ g(n + 1, x) ⊆ g(n, x) for every x ∈ X and n ∈ N. A space X is called a β-space
[6, page 475] if there is a g-function on X such that p ∈ g(n, xn) for each n ∈ N
implies that the sequence {xn}n∈N has an accumulation point. A space X is called
a γ-space [6, page 491] if there is a g-function on X such that (i) {g(n, x) : n ∈ N}
is a neighbourhood base of x and (ii) for every n ∈ N and x ∈ X there exists m ∈ N
such that y ∈ g(m, x) implies that g(m, x) ⊆ g(n, y). We know that every first-countable
quasitopological group G is a β-space [9, Theorem 2.5] and that if X is a β-space and a
γ-space, then X is developable [6, Theorem 10.7]. Therefore, the following corollary
is immediate.

Corollary 2.7. Let G be a quasitopological group G. If G is a γ-space, then G is
developable.

By Proposition 2.2, every first-countable quasitopological group G admits a left-
invariant semimetric λ that generates the original topology of G. However, G need
not be metrisable. In fact, let G = R2 be an additive group endowed with the bowtie
topologyD [6, Example 9.10] . For each p = (x1, x2) ∈ R2 and ε > 0, let

U(p, ε) = {p} ∪ {(x, y) : 0 < |x − x1| < ε, |(y − y1)/(x − x1)| < ε}.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S000497271800103X
Downloaded from https://www.cambridge.org/core. IP address: 59.63.204.129, on 01 Mar 2019 at 11:24:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S000497271800103X
https://www.cambridge.org/core
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Then {U(p, ε) : ε > 0} is a a local base at each point p ∈ G and (G,D) is a completely
regular quasitopological group. Since G is not a σ-space, G is not metrisable.
Hence, it is natural to consider what conditions need to be added to a first-countable
quasitopological group so that the group is metrisable. We obtain the following result.

Lemma 2.8 [6, Lemma 9.3 and Lemma 10.2(i)].

(1) Suppose that X is symmetrisable with respect to a symmetric d. Then xn → x in
X if and only if d(xn, x)→ 0.

(2) Suppose that X is quasimetrisable with respect to the quasimetric d. Then xn→ x
in X if and only if d(x, xn)→ 0.

Theorem 2.9. The following statements are equivalent:

(1) G is a semimetrisable quasitopological group with respect to a continuous left-
invariant semimetric;

(2) G is a quasimetrisable quasitopological group with respect to a left-invariant
quasimetric; and

(3) G is a metrisable topological group.

Proof. The implications (3)⇒ (1), (2) are trivial. For (1) or (2)⇒ (3), we only need
to prove that the quasitopological group G in (1) or (2) is a topological group. It is
sufficient to prove that the multiplication of G is jointly continuous. Obviously, G is
first-countable, so G ×G is first-countable and it is enough to show that the product
map of G ×G into G is sequentially continuous. This is equivalent to the condition
that anbn → e in G whenever an → e and bn → e in G, where e is the neutral element
of G.

(1)⇒ (3). Assume that G is a semimetrisable quasitopological group with respect
to a continuous left-invariant semimetric %. Then

%(anbn, e) = %(a−1
n anbn, a−1

n ) = %(bn, a−1
n ).

Since G is a quasitopological group, an → e implies that a−1
n → e. By the continuity of

% and bn → e, we have %(anbn, e) = %(bn, a−1
n )→ 0. Thus anbn → e by Lemma 2.8(1).

(2)⇒ (3). Let G be a quasimetrisable quasitopological group with respect to
a left-invariant quasimetric d. Fix n ∈ N. Since d a left-invariant quasimetric,
d(e, anbn) ≤ d(e, an) + d(an, anbn) = d(e, an) + d(e, bn). Since an → e and bn → e,
we have d(e, an)→ 0 and d(e, bn)→ 0. By Lemma 2.8(2), d(e, anbn)→ 0, that is,
anbn → e. �

Remark 2.10. The conditions ‘continuous’ in Theorem 2.9(1) and ‘left-invariant’
in Theorem 2.9(2) are essential. By Proposition 2.2, every first-countable
quasitopological group G admits a left-invariant semimetric. The additive group
G = R2 endowed with the bowtie topology is a first-countable quasitopological group
which is not a metrisable space. Further, G1 = Q2 ⊆ G endowed with the subspace
topology is a metrisable quasitopological group, but G1 is not a topological group.

The following question remains open.

Question 2.11. If G is a quasimetrisable quasitopological group, is G metrisable?
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[6] Metrisability in quasitopological groups 307

3. Cardinal invariants in quasitopological groups

Given a space X, we denote by w(X), nw(X), d(X), c(X), l(X), χ(X), πw(X) and
πχ(X) the weight, network weight, density, cellularity, Lindelöf number, character,
π-weight and π-character of X, respectively (see [7]). Let τ be an infinite cardinal
and let G be a semitopological group. We call G τ-narrow [15, Section 6] if, for
every neighbourhood U of the identity in G, there is a subset K ⊆ G with |K| ≤ τ
such that KU = UK = G. The index of narrowness In(G) of G is defined in the
following way: In(G) = min{τ ≥ ω : G is τ-narrow}. By [3, Propositions 5.2.3, 5.2.6
and Theorem 5.2.5], every topological group G satisfies the following equalities:

πχ(G) = χ(G), (3.1)
w(G) = πw(G), (3.2)
w(G) = d(G) · χ(G), (3.3)
w(G) = l(G) · χ(G), (3.4)
w(G) = c(G) · χ(G), (3.5)
w(G) = In(G) · χ(G), (3.6)
w(G) = nw(G) · χ(G). (3.7)

However, one cannot extend these equalities to quasitopological groups. In this
section, we construct examples to show that the above equalities do not hold in
quasitopological groups.

Example 3.1. There exists a completely regular quasitopological group G such that
χ(X) > πχ(G) = ω.

Proof. Consider the additive group G = R2 endowed with the topology T ∗ [2,
page 112]. By [2, Property 3.2], G is a completely regular quasitopological group
and χ(X) > ω. Also, πw(G) = ω from [2, Property 3.4], so πχ(G) = ω. �

Example 3.2. There exists a completely regular quasitopological group G such that
w(G) > πw(G) = ω.

Proof. Consider the additive group G = R2 endowed with the bowtie topology. Then
G is a completely regular quasitopological group and πw(G) = ω. However, w(G) > ω
since G contains an uncountable closed discrete subspace {0} × R. �

Example 3.3. There exists a completely regular quasitopological group G such that
w(G) > nw(G) = χ(G) = ω.

Proof. Consider the additive group G1 = R2 endowed with the bowtie topology D.
(G1,D) is a completely regular quasitopological group. Let G = R × Q endowed
with the subspace topology of G1. Clearly, G1 is a completely regular, first-countable
quasitopological group. Since the subspace R × {0} of G is homeomorphic to R with
the usual topology, R × {0} has a countable network. Thus G =

⋃
y∈Q R × {y} has a
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Figure 1. Construction for Example 3.3.

countable network. That is nw(G) = ω. We will show that w(G) > ω. Let I = [0, 1] be
a subspace of R with the usual topology. Then A = I × {0} is compact in G.

Claim. The compact set A does not have a countable neighbourhood base in G.

For any a ∈G and ε > 0, let V(a, ε) = U(a, ε) ∩G. Then V(a, ε) is a neighbourhood
of x in G. Suppose that A has a countable neighbourhood base {Wn : n ∈ N} in G.
For any x ∈ I, since V((x, 0), 2) is a neighbourhood of A in G, there is n(x) ∈ N such
that Wn(x) ⊆ V((x, 0), 2). Clearly, I is an uncountable set. Hence there is m ∈ N
such that B = {x ∈ I : n(x) = m} is uncountable. Let x0 be an accumulation point of
the set B in I. There exists k ∈ N such that V((x0, 0), 1/k) ⊆ Wm. Take y ∈ B with
y , x0 and |y − x0| < 1/k. Then V((x0, 0), 1/k) ⊆ Wm ⊆ V((y, 0), 2). However, we can
pick a rational number z such that 0 < z < |y − x0|/k. Thus (y, z) ∈ V((y, 0), 1/k) and
(y, z) < V((y, 0), 2), which is a contradiction, as illustrated in Figure 1. Therefore the
compact set A does not have a countable neighbourhood base in G.

If w(G) = ω, then G is second-countable. Since G is completely regular, G is
metrisable by [6, Theorem 1.1]. But this means that the compact set A has a countable
neighbourhood base in G, which is a contradiction. So w(G) > ω. �

Remark 3.4. Examples 3.1 and 3.2 show that neither equation (3.1) nor equation
(3.2) is valid for quasitopological groups. It is well known that every topological
space X satisfies c(X) ≤ d(X) ≤ nw(X) and l(X) ≤ nw(X). By [12, Proposition 2.6],
In(G) ≤ d(G) for every semitopological group G. Therefore Example 3.3 shows that
equations (3.3)–(3.7) cannot be extended to quasitopological groups.

It is known that every subgroup of a τ-narrow topological group is τ-narrow.
However, a (closed) subgroup of a τ-narrow quasitopological group can fail to be τ-
narrow. In fact, the subgroup H = {0} ×R of G = R2 endowed with the bowtie topology
is closed and discrete. Clearly, In(H) = 2ω. But d(G) = ω, so In(G) = ω.

A subset B of a semitopological group G is called τ-narrow if, for every
neighbourhood U of the identity e in G, there is a subset K ⊆ G with |K| ≤ τ such
that B ⊆ KU ∩ UK. Clearly, G is τ-narrow if and only if G is τ-narrow in itself, and
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every subset of a τ-narrow semitopological group is τ-narrow in this group. This leads
to the following theorem.

Theorem 3.5. Let G be a semitopological group. If l(B) ≤ τ, then B is τ-narrow.

Proof. If U is an open neighbourhood of the identity in G, then {xU : x ∈ G} and
{Ux : x ∈ G} are two open coverings of G. Since l(B) ≤ τ, there are two subsets C1,C2
of G such that |Ci| ≤ τ (i = 1, 2) and the families {xU : x ∈ C1} and {Ux : x ∈ C2} cover
B, that is, B ⊆ C1U ∩ UC2. Hence B is τ-narrow. �

Let G be a topological group. If c(G) = ω, then G is ω-narrow [3, Theorem 3.4.7].
Therefore it is natural to ask the following question.

Question 3.6. If G is a quasitopological group with c(G) = ω, is G ω-narrow?
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