第六章 C_p理论初步

函数空间中最引人入胜是部分是 $\mathbf{C}_p(\mathbf{X}, \mathbb{R})$ 拓扑性质的研究. 这些内容简称为 \mathbf{C}_p 理论 $(\mathbf{C}_p$ -theory). 在第四、五章中关于函数空间理论的研究中已获得了大量 \mathbf{C}_p 理论的结果,特别是通过 $\mathbf{C}_p(\mathbf{X})$ 的性质刻画底空间 \mathbf{X} 的一些性质,如证明了下述 \mathbf{C}_p 理论中的一些最基本的对偶定理.

定理 6.0.1 对于完全正则的 T_1 空间 X 下述基数等式成立:

- (1) w(C $_p$ (X))= χ (C $_p$ (X))=|X| (定理 5.2.11 和定理 5.3.3);
- (2) nw(C_n(X))=nw(X) (定理 5.1.1);
- (3) ψ (C $_p$ (X))=ww(C $_p$ (X))=d(X) (定理 5.2.3 和推论 5.3.10);
- (4) $d(C_{p}(X))=ww(X)$ (定理 5.1.6);
- (5) $t(C_p(X)) = \sup\{L(X^n) : n \in \mathbb{N}\}$ (推论 5.4.3);
- (6) c(C_p(X))=ω (推论 5.1.8). ■

推论 6.0.2 设 X, Y 都是完全正则的 T_1 空间. 如果空间 $C_p(X)$ 同胚于空间 $C_p(Y)$, 那么

- (1) |X| = |Y|;
- (2) nw(X)=nw(Y);
- (3) d(X)=d(Y);
- (4) ww(X)=ww(Y);
- (5) $\sup\{L(X^n): n \in \mathbb{N}\}=\sup\{L(Y^n): n \in \mathbb{N}\}.$

性质 P 称为超拓扑性质(supertopological property), 如果拓扑空间 X 具有性质 P 且函数 空间 $C_p(X)$ 同胚于 $C_p(Y)$, 则拓扑空间 Y 也具有性质 P. 推论 6.0.2 说明: 基数, 网络权, 稠密度, 弱权等都是超拓扑性质.

下例说明一些熟知的拓扑性质可以不是超拓扑性质.

例 6.0.3 函数空间 $C_p(S_1 \times \mathbb{N})$, $C_p(S_\omega)$, $C_p(S_2)$ 是相互线性同胚的 (Arhangel'skiĭ[1992]).

空间 $S_1 \times \mathbb{N}$ 是局部紧的可分度量空间,且有无限多个非孤立点. 然而,空间 S_ω 不是 q空间,不是强 Fréchet 空间,且仅有一个非孤立点(例 3.1.8). 空间 S_ω 是 Fréchet 空间,然而,空间 S_2 不是 Fréchet 空间(例 3.1.7). 所以例 6.0.3 说明: 局部紧性,权,特征,可度量性,Čech 完全性,第一可数性,第二可数性,Fréchet 空间性质,强 Fréchet 空间性质等都不是超拓扑性质.

上述定理及超拓扑性质都是基于集开拓扑的一般方法产生的,难以全面反映 \mathbf{C}_p 理论独有的性质. 本章继续第五章的讨论,介绍 \mathbf{C}_p 理论中较成熟的另外一些基数函数性质和Baire空间性质等.

对于非空集合 X,积空间 \mathbb{R}^{\times} 的拓扑可以通过投影函数方式(引理 1.1.11 前),点开拓扑方式(定义 4.3.1)或一致结构方式(定理 4.4.2)产生.对于 $f \in \mathbb{R}^{\times}$,f 在 \mathbb{R}^{\times} 中一致结构方式的基本开邻域形如 $\hat{\mathbf{M}}_{\varepsilon}(S)[f]=\{g\in \mathbb{R}^{\times}:$ 对于每一 $\mathbf{x}\in S$ 有 $\mathbf{f}(\mathbf{x})$ - $\mathbf{g}(\mathbf{x})$ | $<\varepsilon$ },其中 \mathbf{S} 是 \mathbf{X} 的非空有限子集且实数 ε >0.设 $\mathbf{S}=\{\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n\}$,记 $\hat{\mathbf{M}}_{\varepsilon}(S)[f]$ 为 $\mathbf{W}(\mathbf{f},\mathbf{S},\varepsilon)$ 或 $\mathbf{W}(\mathbf{f},\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n,\varepsilon)$. 若 \mathbf{X} 是拓扑空间且 $\mathbf{f}\in \mathbf{C}(\mathbf{X})$, $\mathbf{W}(\mathbf{f},\mathbf{S},\varepsilon)$ 在 $\mathbf{C}(\mathbf{X})$ 上的限制仍记为 $\mathbf{W}(\mathbf{f},\mathbf{S},\varepsilon)$.

本节作为介绍 C_p 理论的预备节,主要扩展诱导函数和投影函数的部分内容.

首先,继续介绍实值函数空间上诱导函数的一些相关结果. 在§4.5 诱导函数 f*是对连续函数 f 定义的. 若函数 f:X \rightarrow Y,可同样定义诱导函数 f*: $\mathbb{R}^{Y} \rightarrow \mathbb{R}^{X}$ 为对于每一 $g \in \mathbb{R}^{Y}$ 有 f*(g)=gof. 定义在 C(Y)或 \mathbb{R}^{Y} 上的诱导函数都记为 f*. 当 \mathbb{R}^{X} 赋予积空间拓扑时,C $_{p}$ (X)是 \mathbb{R}^{X} 的子空间.

引理 6.0.4 若函数 $f: X \to Y$, 则 $f^*: \mathbb{R}^Y \to \mathbb{R}^X$ 是连续的,且当 f 是满函数时 f^* 是闭嵌入. 证明 对于每一 $g \in \mathbb{R}^Y$, 让 $h = f^*(g)$,且 $W(h, S, \varepsilon)$ 是 h 在 \mathbb{R}^X 中的基本开邻域.令 T = f(S),则 $W(g, T, \varepsilon)$ 是 g 在 \mathbb{R}^Y 中的邻域且 $f^*(W(g, T, \varepsilon)) \subset W(h, S, \varepsilon)$,所以 f^* 是连续的. 设 Y = f(X)且 g_1 和 g_2 是 \mathbb{R}^Y 是不同的元,则存在 $y \in Y$ 使得 $g_1(y) \neq g_2(y)$. 取定 $x \in f^{-1}(y)$, 那么 $f^*(g_1)(x) = g_1(y) \neq g_2(y) = f^*(g_2)(x)$,于是 $f^*(g_1) \neq f^*(g_2)$,即 f^* 是单射.再设 $g \in \mathbb{R}^Y$ 且

定理 **6.0.5** (Arhangel'skiǐ[1992])设 Y 是完全正则的 T_1 空间,且 $f:X \to Y$ 和 $g:X \to Z$ 都是满射,则 $f*(C(Y)) \subset g*(C(Z))$ 当且仅当存在连续函数 $h:Z \to Y$ 使得 $f=h \circ g$.

证明 充分性. 设存在连续函数 $h:Z \to Y$ 使得 $f=h \circ g$. 若 $s \in f^*(C(Y))$, 存在 $t \in C(Y)$ 使得 $s=t \circ f$, 那么 $h^*(t)=t \circ h \in C(Z)$. 由于 $g^*(h^*(t))=h^*(t)(g)=t \circ h \circ g=t \circ f=s$, 即 $s \in g^*(C(Z))$.

必要性. 设 $f^*(C(Y)) \subset g^*(C(Z))$. 先证明断言: 如果 $u \in X$, $A \subset X$ 且 $g(u) \in \overline{g(A)}$, 则 $f(u) \in \overline{f(A)}$. 若不然,则存在 $q \in C(Y)$ 使得 q(f(u))=1 且 $q(f(A))=\{0\}$. 于是 $f^*(q)(u)=1$ 且 $f^*(q)(A)=\{0\}$. 由 假 设 ,存在 $p \in C(Z)$ 使 得 $g^*(p)=f^*(q)$. 从 而 $p(g(u))=g^*(p)(u)=1$ 且 $p(g(A))=g^*(p)(A)=\{0\}$, 这与 p 的连续性相矛盾.

下面证明对于每一 $x \in X$ 有 $g^{-1} g(x) \subset f^{-1} f(x)$. 设 $u \in g^{-1} g(x)$. 让 $A = \{x\}$, 则 $g(u) = g(x) \in g(A)$. 由 所 证 断 言 , $f(u) \in \overline{f(A)} = \overline{f(\{x\})} = \{f(x)\}$,即 f(u) = f(x),所 以 $g^{-1} g(x) \subset f^{-1} f(x)$. 对于每一 $z \in Z$,置 $h(z) = f(g^{-1}(z))$,则函数 $h: Z \to Y$ 是良好定义的. 显然, $h \circ g = f \circ g^{-1} \circ g = f$. 下面再证明 h 是连续的.

设 $z \in \overline{B} \subset Z$. 让 $A = g^{-1}(B)$ 且取 $u \in g^{-1}(z)$,那么 $g(u) = z \in \overline{B} = \overline{g(A)}$,于是 $f(u) \in \overline{f(A)}$,即 $h(g(u)) \in \overline{h(g(A))}$.但是 g(A) = B 且 g(u) = z,因此 $h(z) \in \overline{h(B)}$,故 $h(\overline{B}) \subset \overline{h(B)}$.所以 h 是连续的. \blacksquare

空间 X 称为 Urysohn 空间(Urysohn space),如果对于 X 中不同的两点 x, y 存在连续函数 $f:X \to \mathbb{I}$ 使得 f(x)=0 且 f(y)=1. 显然,完全正则的 T_1 空间是 Urysohn 空间.

推论 6.0.6 设 Y 是完全正则的 T_1 空间且 $f:X \to Y$ 是满射,则

- (1) f 是连续的当且仅当 f*(C(Y)) ⊂ C(X);
- (2) f 是连续的单射当且仅当 X 是 Urysohn 空间且 f*(C(Y))是 $C_n(X)$ 的稠密子集;
- (3) f 是同胚的当且仅当 X 是完全正则的 T_1 空间且 f*(C(Y))=C(X).

证明 设 g: $X \to X$ 是恒等函数,由定理 6.0.5 可得(1). 这时无须设 Y 是 T_1 空间.

- (2) 设 f 是连续的单射. 易验证, X 是 Urysohn 空间. 让 h∈ C(X), 且[S, V]是 h 在 C_p(X) 中的基本开邻域, 由于 f 是单射, 存在 g∈C_p(Y)使得对于每一 x∈S 有 g(f(x))=h(x), 于是 f*(g)∈[S, V], 从而 f*(C(Y))是 C_p(X)的稠密子集. 反之, 设 f*(C(Y))是 C_p(X)的稠密子集. 由(1), f 是连续的. 再由定理 4.5.6(2), f 是单射.

设 $f:X \to Y$ 是满射,其中 X 是拓扑空间. Y 上的使得 f 是连续的最精的完全正则拓扑称为 Y 上(由 f 诱导)的 R 商拓扑(R-quotient topology)或实商拓扑(real quotient topology). 从空间 X 到空间 Y 上的函数 f 称为 R 商映射(R-quotient mapping)或实商映射(real quotient mapping),如果 Y 上的拓扑恰是由 f 诱导的 R 商拓扑,即 Y 是完全正则空间且 Y 的子集 U 是 Y 的开集 当且仅当 f^{-1} (U)是 X 的开集(Arhangel'skiǐ[1985]).

显然,若 $f:X \to Y$ 是商映射且 Y 是完全正则空间,则 f 是 R 商映射. R 商映射未必是商映射. 考虑从完全正则空间 X 到空间 Y 上的商映射 f,其中 Y 不是完全正则空间,但是 Y 中的任意两点可由连续函数分离(如,非完全正则的 Urysohn 空间).那么 f 关于 Y 上由 f 诱导的 Y 的 R 商拓扑是 R 商映射,但是 f 不是商映射.

推论 4.5.8 和定理 4.5.10 表明当 $f:X\to Y$ 是商映射时诱导函数 $f^*:C_p(Y)\to C_p(X)$ 是闭嵌入. R 商映射刻画了诱导函数的闭嵌入性质.

定理 6.0.7 设 $f:X \to Y$ 是满函数且 Y 是完全正则空间,则下述条件相互等价:

- (1) f 是 R 商映射;
- (2) $C(Y) = \{h \in \mathbb{R}^{Y} : h \circ f \in C(X)\};$
- (3) f*(C_n(Y))是 C_n(X)的闭集;
- (4) f*是闭嵌入.

证明 (1) ⇒(2). 设 $f:X \to Y \to R$ 商映射. 若函数 $h:Y \to R$ 使得 $h \circ f$ 是连续的, 让 W 是 R的开集, 那么 f^{-1} (h^{-1} (W))=($h \circ f$)⁻¹ (W)是 X 的开集. 因为 $f \to R$ 商映射, 所以 h^{-1} (W)是 Y 的开集, 从而 h 是连续的. 故 $C(Y)=\{h \in \mathbb{R}^Y : h \circ f \in C(X)\}$.

(2) ⇒ (4). 由推论 4.5.8(1), $f^*:C_p(Y)\to C_p(X)$ 是嵌入.下面证明 $f^*(C_p(Y))$ 是 $C_p(X)$ 的 闭集.让 $g\in C(X)\setminus f^*(C(Y))$.先证明存在 $x,\ z\in X$ 使得 $g(x)\neq g(z)$ 且 f(x)=f(z).若不然,则由 定理 4.5.10 的证明,对于每一 $y\in Y$, $g(f^{-1}(y))$ 是单点集.定义 $h:Y\to \mathbb{R}$ 使得对于每一 $y\in Y$, $h(y)=g(f^{-1}(y))$.因为 $g=h\circ f\in C(X)$,由(2),所以 $h\in C(Y)$,于是 $g\in f^*(C(Y))$,矛盾.设 U 和 V 是 \mathbb{R} 中 g(x)和 g(z)的不相交邻域,那么 $g\in [x,\ U]\cap [z,\ V]$,而 $[x,\ U]\cap [z,\ V]$ 是 $C_p(X)$ 的开集.如果 $q\in [x,\ U]\cap [z,\ V]$,那么 $q(x)\neq q(z)$.而 f(x)=f(z),于是 $q\notin f^*(C(Y))$.因此 $[x,\ U]\cap [z,\ V]\cap f^*(C(Y))=\emptyset$.故 $f^*(C(Y))$ 是 $C_p(X)$ 的闭集.

(4)⇒(3)是显然的.

(3) ⇒ (2). 设 $f^*(C_p(Y))$ 是 $C_p(X)$ 的闭集. 由于 $C_p(Y)$ 是积空间 \mathbb{R}^Y 的稠密子集(定理 4.3.6),又由于 $f^*:\mathbb{R}^Y \to \mathbb{R}^X$ 是嵌入(引理 6.0.4),所以 $f^*(C_p(Y))$ 是 $f^*(\mathbb{R}^Y)$ 的稠密子集,于是 在 $C_p(X)$ 中 $f^*(C_p(Y))$ 是 $C(X) \cap f^*(\mathbb{R}^Y)$ 的稠密子集. 因为 $f^*(C_p(Y))$ 是 $C_p(X)$ 的闭集,则 $f^*(C(Y)) = C(X) \cap f^*(\mathbb{R}^Y)$,从而 $C(Y) = \{h \in \mathbb{R}^Y : f^*(h) \in C(X)\}$.

(2)⇒(1). 设 C(Y)={h∈ℝ^Y: h∘f∈C(X)}={h∈ℝ^Y: f*(h)∈C(X)}. 由引理 6.0.4, 则 f*(C(Y)) ⊂ C(X), 再由推论 6.0.6, f 是连续的. 另一方面, 设 U 是空间 Y 的子集且 f⁻¹(U)是 X 的开集. 让 Y 是集合 Y 赋予由 f 诱导的 R 商拓扑且让 id:Y → Y 是恒等函数, 则 id∘f 是 R 商映射, 且(id∘f)⁻¹(id(U))=f⁻¹(U), 所以 id(U)是 Y 的开集. 对于每一 y∈U, 存在连续函数 g:Y → I 使得 g(id(y))=0 且 g(Y \id(U)) ⊂ {1}. 由于 g∘id∘f:X → I 连续, 于是 g∘id 连续. 让 V=(g∘id)⁻¹([0, 1/2)), 则 V 是 Y 的开集且 y∈ V ⊂ U. 故 U 是 Y 的开集, 所以 f 是 R 商映射. ■ 由此, 对于完全正则空间 Y 及满函数 f:X → Y, f 是 R 商映射当且仅当对于实值函数 h:Y → ℝ, h∘f 的连续性导出 h 的连续性. 对照引理 4.5.9, 命名 "R 商映射"是自然的.

其次,继续介绍§4.6 中讨论过的投影函数的进一步性质. 对于积空间 $\prod_{\alpha \in A} X_{\alpha}$ 及 A 的非空子集 B,投影函数 $p_B: \prod_{\alpha \in A} X_{\alpha} \to \prod_{\alpha \in B} X_{\alpha}$ 定义为对于每一 $\mathbf{x} = (\mathbf{x}_{\alpha}) \in \prod_{\alpha \in A} X_{\alpha}$ 和 $\alpha \in B$ 有 \mathbf{p}_{α} (\mathbf{p}_{B} (\mathbf{x}))= \mathbf{x}_{α} . 显然,投影函数是开映射. 现在,对于积空间 \mathbf{x}^{x} 及空间 \mathbf{x} 的非空子集 \mathbf{y} ,投影函数 $\mathbf{p}_{\mathsf{y}}: \mathbf{x}^{\mathsf{x}} \to \mathbf{x}^{\mathsf{y}}$ 定义为对于每一 $\mathbf{f} \in \mathbf{x}^{\mathsf{x}}$, \mathbf{p}_{y} (\mathbf{f})= $\mathbf{f}_{|\mathsf{y}}$,这时投影函数也称为限制函数(restriction function). 定义在子空间 \mathbf{C}_{p} (\mathbf{x})上的投影函数仍记为 $\mathbf{p}_{\mathsf{y}}: \mathbf{C}_{p}$ (\mathbf{x}) \mathbf{x} 0 中 1988年 \mathbf{x} 0. Lasyth(\mathbf{x} 0. \mathbf{x} 1 从 \mathbf{x} 2 从 \mathbf{x} 3 从 \mathbf{x} 4 从 \mathbf{x} 3 从 \mathbf{x} 4 从 \mathbf{x} 5 从 \mathbf{x} 5 从 \mathbf{x} 6 从 \mathbf{x} 6 从 \mathbf{x} 7 从 \mathbf{x} 8 从 \mathbf{x} 9 从 \mathbf{x}

定理 6.0.8 设 Y 是完全正则空间 X 的子空间,则

- (1) p_Y 连续且 $C_p(Y|X)=C_p(Y)$;
- (2) 若Y是X的闭子空间,则 p_{Y} : $C_{p}(X) \rightarrow C_{p}(Y|X)$ 是开映射;
- (3) 若Y是X的紧子空间,则 $C_n(Y|X)=C_n(Y)$;
- (4) 若 X 是正规空间且 Y 是 X 的闭子空间,则 C "(Y|X)=C "(Y);
- (5) 若 Y 是 X 的稠密子空间,则 $p_Y:C_p(X) \rightarrow C_p(Y|X)$ 是单射.
- 证明 (1) 显然, p_Y 是连续的. 对于任意的 $g \in C_p(Y)$,设 $W(g, S, \varepsilon)$ 是 g 在 $C_p(Y)$ 中的基本开邻域,由 X 的完全正则性,存在 $f \in C_p(X)$ 使得 $f_{|S} = g_{|S}$,那么 $p_Y(f) \in W(g, S, \varepsilon)$,所以 $\overline{p_Y(C_p(X))} = C_p(Y)$.
- (2) 对于 $C_p(X)$ 的基本开集 $W(f, F, \varepsilon)$, 设 $S=F\cap Y, T=F\setminus Y$. 显然, $p_Y(W(f, F, \varepsilon))$ $\subset W(p_Y(f), S, \varepsilon)\cap p_Y(C_p(X))$. 设 $g\in W(p_Y(f), S, \varepsilon)\cap p_Y(C_p(X))$, 选取 $g_1\in C_p(X)$ 使得 $p_Y(g_1)=g$. 由 X的完全正则性,存在 $h\in C_p(X)$ 使得 $h(Y)=\{0\}$ 且当 $t\in T$ 时有 $h(t)=f(t)-g_1(t)$. 让 $q=h+g_1$,则 $q\in W(f, F, \varepsilon)$ 且 $p_Y(q)=g$. 故 $p_Y(W(f, F, \varepsilon))=W(p_Y(f), S, \varepsilon)\cap p_Y(C_p(X))$.
- (3)和(4) 如果函数 g:Y \to \mathbb{R} 连续,则存在连续函数 f:X \to \mathbb{R} 使得 f $_{|Y}$ =g,这表明 C $_p$ (Y|X)=C $_p$ (Y).

(5) 设 $f_1, f_2 \in C_p(X)$, 由于 Y 是 X 的稠密子集,若 $f_{1|Y} = f_{2|Y}$,则 $f_1 = f_2$,于是 p_Y 是单射. ■

若未特别说明, 本章以下各节所论空间均指满足完全正则且 T₁ 分离性质的拓扑空间.

§6.1 Monolithic 空间与 stable 空间

本节的目的是介绍 A. Arhangel'skii[1982]引入的 monolithic 性质与 stable 性质,它们是 C_n理论中重要的一组对偶性质. 作为预备,先介绍有趣的因子引理(factorization lemma).

设函数 $f:A \to Y$. 对于 $x \in A$, A 的开子集族 \mathcal{U} 称为 f 在 x 的 π 基(π -base), 若对于 f(x)在 Y 中的任一开邻域 W 有 $x \in \overline{U\{U \in \mathcal{U}: f(U) \subset W\}}$. 显然, 若函数 f 在点 $x \in A$ 连续且 \mathcal{B} 是 x 在 A 的局部基,则 \mathcal{B} 是 f 在 x 的 π 基.

定理 6.1.1 (因子引理, Arhangel'skiǐ[1982, 1984])设 A 是积空间 $\prod_{\alpha \in M} X_{\alpha}$ 的稠密子集, 其中每一 X_{α} 是可分度量空间. 若函数 $f:A \to Y$ 连续且 Y是第一可数的正则 T_1 空间, 则存在 M 的可数子集 L 和连续函数 $\varphi:p_L(A) \to Y$ 使得 $f=\varphi \circ p_L$.

证明 令 $X = \prod_{\alpha \in M} X_{\alpha}$. 首先注意到, X 具有可数链条件(推论 5.0.4), 于是 X 的稠密子集 A 也具有可数链条件(练习 5.1.2), 从而 A 的开子集仍具有可数链条件. 设 \mathcal{S} 是积空间 X 的全体非空基本开集组成的 X 的基.

(1.1) 对于每一 $x \in A$,存在 \mathcal{B} 的可数子集 \mathcal{U}_x 使得 $\mathcal{U}_{x \mid A}$ 是 f 在 x 的 π 基.

由于Y是第一可数空间,设{W_n}_{n∈N}是f(x)在Y中的可数局部基. 让 **2**={f⁻¹(W_n)}_{n∈N}. 对于每一n∈N,记{B∈**3**: B∩A⊂f⁻¹(W_n)}的一个极大互不相交集族为 **2**_{n∈N},则 **2**_{n∈N}, **3**_{n∈N}, **3**_{n∈N} **3**_{n∈N}

对于 X 的基本开集 $U=\prod_{\alpha\in M}U_{\alpha}$,记 $K_{U}=\{\alpha\in M:U_{\alpha}\neq X_{\alpha}\}$,则 K_{U} 是 M 的有限子集. 对于每一 $x\in A$,让 $L_{x}=U\{K_{U}:U\in \mathcal{U}_{x}\}$,则 L_{x} 是 M 的可数子集. 下面归纳定义 M 的 递增的可数集列 $\mathcal{A}=\{A_{i}\}$ 如下.

让 $L=\bigcup_{i\in\mathbb{N}}L_i$, $A^*=\bigcup_{i\in\mathbb{N}}A_i$, 则 L和 $A^*分别是 M 和 A 的可数子集且$

- (1.2) 若 F 是 L 的有限子集,则存在 i ∈ N使得 F \subset L;
- (1.3) 若 $x \in A^*$, W 是 f(x)在 Y 中的邻域,则 $x \in \overline{\bigcup \{B \in \mathcal{Z} : f(B \cap A) \subset W \exists K_B \subset L\}}$ (关于 X 的闭包).

事实上,对于每一 $U \in \mathcal{U}_x$, $K_U \subset L_x \subset L$,由(1.1)有 $x \in \operatorname{cl}_A(\bigcup \{U \cap A : U \in \mathcal{U}_x, f(U \cap A) \subset W\}) \subset \overline{\bigcup \{B \in \mathcal{B} : f(B \cap A) \subset W \coprod K_B \subset L\}}$.

(1.4) p_L (A*)是 p_L(A)的稠密子集.

设 $z \in A$, $U \not\in z$ 在 X 中的基本开集且 $K_U \subset L$, 下证 $U \cap A^* \neq \emptyset$. 因为 $K_U \not\in L$ 的有限 子集, 存在自然数 $m \ge 2$ 使得 $K_U \subset L_m$, 则 $p_{L_m}(S_m) \not\in p_{L_m}(A)$ 的稠密子集, 由于 $S_m \subset A_m \subset A^*$,于是 $U \cap A^* \supset U \cap S_m \neq \emptyset$,所以 $p_L(A^*) \not\in p_L(A)$ 的稠密子集.

从而, $A \subset p_1^{-1}(p_1(A)) \subset p_1^{-1}(\overline{p_1(A^*)})$,于是 $A = p_1^{-1}(\overline{p_1(A^*)}) \cap A$.

- (1.5) 如果 X 的基本开集 $U=\prod_{\alpha\in M}U_{\alpha}$ 和 $V=\prod_{\alpha\in M}V_{\alpha}$ 满足对于每一 $\alpha\in L$ 有 $U_{\alpha}=V_{\alpha}$ 且 $p_{L}(U)\cap p_{L}(A)\neq\emptyset$,则
 - $(1.5.1) \ \overline{f(U \cap A)} \cap \overline{f(V \cap A)} \neq \emptyset;$
 - $(1.5.2) f(V \cap A) \subset \overline{f(U \cap A)}$.

事实上,因为 $p_L(U) \cap p_L(A) \neq \emptyset$ 且 $p_L(U)$ 是 $p_L(X)$ 的开集,则 $p_L(U) \cap p_L(A^*) \neq \emptyset$, 所以存在 $z \in A^*$ 使得对于每一 $\alpha \in L$ 有 $p_\alpha(z) \in U_\alpha$. 如果 $f(z) \notin \overline{f(U \cap A)} \cap \overline{f(V \cap A)}$,不妨 设 $f(z) \notin \overline{f(U \cap A)}$,存在 f(z)在 Y 中的邻域 W 使得 W $\cap f(U \cap A) = \emptyset$. 令 $\mathcal{G} = \{B \in \mathcal{S} : f(B \cap A) \subset W \perp B \setminus B \cap CL\}$,由(1.3), $z \in \overline{\bigcup \mathcal{G}}$,那么 $p_L(z) \in \overline{p_L(\bigcup \mathcal{G})} = \overline{\bigcup \{p_L(G) : G \in \mathcal{G}\}}$,于是 存在 $G \in \mathcal{G}$ 使得 $p_L(U) \cap p_L(G) \neq \emptyset$. 因为 $K_G \subset L$,所以 $U \cap G \neq \emptyset$,于是 $U \cap G \cap A \neq \emptyset$ 且 $\emptyset = W \cap f(U \cap A) \supset f(G \cap A) \cap f(U \cap A) \supset f(U \cap G \cap A) \neq \emptyset$,矛盾. 故(1.5.1)成立.

若存在 $y \in f(V \cap A) \setminus f(U \cap A)$, 由 Y 的正则性,存在 y 在 Y 中的邻域 W 使得 $\overline{f(U \cap A)} \cap \overline{W} = \emptyset$, 取定 $x \in V \cap A$ 使得 f(x) = y, 由 f 的连续性,存在 x 在 X 中的基本开邻域 V'使得 $f(V' \cap A) \subset W$,不妨设 $p_L(V') \subset p_L(V)$. 再取 X 中的基本开集 U'使得 $p_L(U') = p_L(V')$, $p_{M \mid L}(U') = p_{M \mid L}(U)$,那么 $\overline{f(U' \cap A)} \cap \overline{f(V' \cap A)} \subset \overline{f(U \cap A)} \cap \overline{W} = \emptyset$. 然而,由(1.5.1)知, $\overline{f(U' \cap A)} \cap \overline{f(V' \cap A)} \neq \emptyset$,矛盾.这说明(1.5.2)成立.

(1.6) 若 $x, x' \in A \perp p_L(x) = p_L(x')$, 则 f(x) = f(x').

事实上,设 W 和 W'分别是 f(x), f(x')在 Y 中的任一邻域,存在 X 中分别含有 x 和 x'的 基本开集 U 和 U'使得 $\overline{f(U\cap A)} \subset W$ 且 $\overline{f(U'\cap A)} \subset W'$. 由于 $p_L(x)=p_L(x')$,不妨设 $p_L(U)=p_L(U')$,而 $x\in U\cap A$,从(1.5.1)知 $\overline{f(U\cap A)}\cap \overline{f(U'\cap A)}\neq\emptyset$,所以 $W\cap W'\neq\emptyset$.而 Y 是 T_2 空间,故 f(x)=f(x').

(1.7) φ :p_L(A) \rightarrow Y 是连续的.

对于每一 $q \in p_L(A)$,记 $y = \varphi(q)$,取定 $x \in A$ 使得 $p_L(x) = q$,则 f(x) = y. 让 W 是 y 在 Y 中 的邻域,存在 y 在 Y 中的邻域 V 和 x 在 X 中的基本开邻域 U 使得 $\overline{V} \subset W$ 且 $f(U \cap A) \subset V$. 再 让 U'是 X 的基本开集满足 $p_L(U') = p_L(U)$, $p_{M \setminus L}(U') = p_{M \setminus L}(X)$,因为 $x \in U \cap A$,由(1.5.2), $f(U' \cap A) \subset \overline{f(U \cap A)} \subset \overline{V} \subset W$. 由 φ 的 定 义 ,

 φ (p_L(U) \cap p_L(A))=f(p_L⁻¹(p_L(U) \cap p_L(A)) \cap A) \subset f(p_L⁻¹(p_L(U')) \cap A)=f(U' \cap A) \subset W, 而 q=p_L(x) \in p_L(U), 所以 p_L(U) \cap p_L(A)是 q 在 p_L(A)中的邻域, 故 φ 是连续的.

利用 Stone-Weierstrass 定理证明的例 4.6.5 是因子引理的推论. 下面再介绍因子引理的几个有趣推论.

推论 6.1.2 设 X 是 Tychonoff 方体 \mathbb{I}^A 的稠密子空间,则 X 是伪紧空间当且仅当对于 A 的每一可数子集 B 有 $\mathfrak{p}_{\scriptscriptstyle B}$ (X)= \mathbb{I}^B .

证明 首先,设对于 A 的每一可数子集 B 有 $p_B(X)=\mathbb{I}^B$. 对于每一 $f \in C_p(X)$,由因子引理,存在 A 的可数子集 B 和 $\varphi \in C_p(\mathbb{I}^B)$ 使得 $f = \varphi \circ p_B$. 因为 \mathbb{I}^B 是紧空间, $f(X) = \varphi (\mathbb{I}^B)$ 是 R 的有界子集. 故 X 是伪紧空间.

反之,设 X 是伪紧空间且 B 是 A 的可数子集. 由于 X 是 \mathbb{I}^A 的稠密子集,于是伪紧空间 $p_B(X)$ 是 \mathbb{I}^B 的稠密子集,而 \mathbb{I}^B 是度量空间,所以 $p_B(X)$ 是紧空间(定理 2.2.9),因此 $p_B(X)$ 是 \mathbb{I}^B 的闭子集,故 $p_B(X)$ = \mathbb{I}^B .

推论 6.1.3 积空间 \mathbb{N}^{ω_1} 不是正规空间.

证明 对于 i=1, 2, 令 $F_i = \{x = (x_\alpha) \in \mathbb{N}^{\omega_1} : 对于每一 n \in \mathbb{N} \setminus \{i\} \mid f \mid \{\alpha < \omega_1 : x_\alpha = n\} \mid \leq 1\}$, 那么 F_1 , F_2 是 \mathbb{N}^{ω_1} 中不相交的闭集. 如果 \mathbb{N}^{ω_1} 是正规空间,存在 $f \in C(\mathbb{N}^{\omega_1})$ 使得 $f(F_i) = \{i\}$. 由因子引理,存在 ω_1 的可数子集 $L = \{\alpha_n : n \in \mathbb{N}\}$ 和连续函数 $\varphi: p_L(C(\mathbb{N}^{\omega_1})) \to \mathbb{R}$ 使得 $f = \varphi \circ p_L$. 依下述方式选取 \mathbb{N}^{ω_1} 中的点 $g \in \mathbb{N}$ 和 $g \in \mathbb{N}$

对于空间X, 总有 $d(X) \le nw(X)$ 和 $ww(X) \le nw(X)$. 这两个基数不等式中不等号可能成立,如对于 Sorgenfrey 直线 $S(\emptyset) = S(\emptyset) \le N_0 \le N$

对于无限基数 λ , 空间 X 称为 λ -monolithic, 如果对于 X 的每一基数不超过 λ 的子集 A

有 $\operatorname{nw}(\overline{A}) \leq \lambda$. 特别地, X称为 \aleph_0 -monolithic 空间, 如果 X 的每一可数子集的闭包具有可数 网络. X 称为 monolithic 空间(monolithic space), 如果对于每一无限基数 λ , X 是 λ -monolithic 空间, 即对于 X 的每一子空间 Y 有 $\operatorname{d}(Y)=\operatorname{nw}(Y)$.

显然, 度量空间, cosmic 空间都是 monolithic 空间(引理 5.1.4). 易验证, λ -monolithic 性质是遗传性质(练习 6.1.1).

对于无限基数 λ , 空间 X 称为 λ -stable, 如果 Y 是空间 X 的连续象且 $ww(Y) \le \lambda$, 则 $nw(Y) \le \lambda$. X 称为 stable 空间(stable space), 如果对于每一无限基数 λ , X 是 λ -stable 空间, 即对于 X 的每一连续象 Y 有 ww(Y)=nw(Y).

显然,紧空间,cosmic 空间都是 stable 空间. 但是,monolithic 空间与 stable 空间是互不蕴含的. 一方面,度量空间(monolithic 空间)未必是 stable 空间. 如,让 M 是基数为 2^{ω} (连续统基数)的离散度量空间,则 nw(M)= 2^{ω} . 由引理 5.3.8(3),ww(M)= \aleph_0 . 故 M 不是 \aleph_0 -stable 空间. 另一方面,紧空间(stable 空间)未必是 monolithic 空间.如,由 Hewitt-Marczewski-Pondiczery 定理(引理 5.0.3),Tychonoff 方体 \mathbb{I}^{ω_1} 是可分空间,若 \mathbb{I}^{ω_1} 是 \aleph_0 -monolithic 空间,则紧空间 \mathbb{I}^{ω_1} 是 cosmic 空间,于是 \mathbb{I}^{ω_1} 具有可数基(定理 2.3.7),但是 w(\mathbb{I}^{ω_1})= \mathbb{N}_1 (练习 5.1.1),矛盾. 故 \mathbb{I}^{ω_1} 不是 \mathbb{N}_0 -monolithic 空间.

引理 6.1.4 (1) 映射保持 λ-stable 性质;

(2) λ-stable 性质是关于开闭子空间遗传的.

证明 从 λ -stable 空间的定义可直接验证(1)(练习 6.1.2). (2) 设 X 是 λ -stable 空间, Y 是 X 的非空的开闭子空间. 取定 $y_0 \in Y$, 定义 $f:X \to Y$ 使得 $f_{|Y}$ 是恒等函数且 $f(X \setminus Y) \subset \{y_0\}$, 则 f 是连续的满射,由(1), Y 是 λ -stable 空间. \blacksquare

下面两个定理说明在 C_p 理论中 λ -monolithic 性质与 λ -stable 性质是对偶性质.

定理 6.1.5 (Arhangel'skiǐ[1982])C $_p$ (X)是 λ -monolithic 空间当且仅当 X 是 λ -stable 空间.

证明 必要性. 设 $C_p(X)$ 是 λ -monolithic 空间. 如果Y是空间X的连续象且ww(Y) $\leq \lambda$,由推论 4.5.8(1), $C_p(Y)$ 可嵌入 $C_p(X)$,于是 $C_p(Y)$ 是 λ -monolithic 空间. 又由定理 6.0.1, $d(C_p(Y))=ww(Y) \leq \lambda \operatorname{Lnw}(C_p(Y))=nw(Y)$,所以 $nw(Y) \leq \lambda$.故 X 是 λ -stable 空间.

充分性. 设 X 是 λ -stable 空间. 若 C $_p$ (X)的无限子空间M 的基数不超过 λ , 定义对角线 函数 $f = \Delta_M : X \to \mathbb{R}^M$, 即对于每一 $x \in X$ 和 $g \in M$ 有 p_g f(x) = g(x) , 则 f 是连续的. 让 f = f(X) 则 f = g(X) 则 f

令 $\widetilde{\mathbf{f}}$ =i $^{-1}$ o f:X \rightarrow $\widetilde{\mathbf{Y}}$, 则 $\widetilde{\mathbf{f}}$ 是 R 商映射,由定理 6.0.7,所以 $\mathbf{C}_p(\widetilde{\mathbf{Y}})$ 同胚于 $\mathbf{C}_p(\mathbf{X})$ 的闭子空间 \mathbf{F} ={h o $\widetilde{\mathbf{f}}$: h \in $\mathbf{C}_p(\widetilde{\mathbf{Y}})$ }. 设 g \in M,则函数 p $_g$ o id: $\widetilde{\mathbf{Y}}$ \rightarrow R是连续的,于是 \mathbf{p}_g o id \in $\mathbf{C}_p(\widetilde{\mathbf{Y}})$,那么 g=p $_g$ o f=p $_g$ o id o $\widetilde{\mathbf{f}}$ \in F,即 M \subset F.因而 $\widetilde{\mathbf{M}}$ (关于空间 $\mathbf{C}_p(\mathbf{X})$ 的闭包) \subset $\widetilde{\mathbf{F}}$ =F,从而 $\mathbf{nw}(\widetilde{\mathbf{M}})$ \leq $\mathbf{nw}(\mathbf{F})$ = $\mathbf{nw}(\mathbf{C}_p(\widetilde{\mathbf{Y}}))$ \leq λ . 故 $\mathbf{C}_p(\mathbf{X})$ 是 λ -monolithic 空间.

定理 6.1.6 (Arhangel'skiǐ[1982])C $_p$ (X)是 λ -stable 空间当且仅当 X 是 λ -monolithic 空间.

证明 必要性. 设 $C_p(X)$ 是 λ -stable 空间,由定理6.1.5, $C_pC_p(X)$ 是 λ -monolithic 空间,再由对角线引理(定理4.5.2), X 可嵌入 $C_pC_p(X)$,于是X 是 λ -monolithic 空间.

考虑投影函数 $p_F: C_p(X) \to C_p(F)$,即对于每一 $g \in C_p(X)$ 有 $p_F(g) = g_{|F}$. 令 $Z = C_p(F|X)$,则 $nw(C_p(Z)) = nw(Z) \le nw(C_p(F)) \le \lambda$. 因为 F 是 X 的闭子空间,由定理 6.0.8(2), $p_F: C_p(X) \to Z$ 是开映射. 对于每一 $f \in M$,由 A 的定义,存在函数 $h_f: Z \to \mathbb{R}$ 使得 $h_f \circ p_F = f$.

因为 p_F 是 R 商映射,由定理 6.0.7, h_f 是连续的,即 $h_f \in C_p(Z)$. 令 $H=\{h \circ p_F : h \in C_p(Z)\}$,则 $M \subset H$. 然而 $H=p_F^*(C_p(Z))$,再由定理 6.0.7, $C_p(Z)$ 同胚于 $C_pC_p(X)$ 的闭子集 H,因而 $nw(\overline{M}) \le nw(H)=nw(C_p(Z)) \le \lambda$.

上述证明表明 C_n C_n (X)是 λ -monolithic 空间. 由定理 6.1.5, C_n (X)是 λ -stable 空间.

推论 6.1.7 空间 X 是 monolithic 空间(stable 空间)当且仅当 $C_p(X)$ 是 stable 空间 (monolithic 空间)当且仅当 $C_p(X)$ 是 monolithic 空间(stable 空间).

推论 6.1.8 设 X 是紧空间,则 C $_{p}$ (X)的每一紧子集是 Fréchet 空间.

证明 设 F 是 C $_p$ (X)的紧子集且 y ∈ \overline{A} \subset F. 由于 X 是紧空间,所以每一 X^n (\forall n ∈ \mathbb{N}) 是紧空间,由定理 6.0.1(5),C $_p$ (X)有可数 tightness,于是存在 A 的可数子集 C 使得 y ∈ \overline{C} . 又由于 X 是紧空间,所以 X 是 stable 空间,由推论 6.1.7,C $_p$ (X)是 monolithic 空间,从而 \overline{C} 是 cosmic 的紧空间,再由定理 2.3.7, \overline{C} 是度量空间,因此存在由 C 中点组成的序列收敛于 y. 故 \overline{F} 是 C $_p$ (X)的 Fréchet 子空间. \blacksquare

例 6.1.9 Niemytzki 切圆盘拓扑空间 T(Steen, Seebach[1978]): 非 🖔 -monolithic 空间.

令 $S=\{(x,y): x,y\in\mathbb{R},y>0\}$, $L=\{(x,0): x\in\mathbb{R}\}$ 且 $T=S\bigcup L$. 在 T 上赋予 Niemytzki 56 切圆盘 拓扑(Niemytzki's tangent disc topology): 对于每一 $t\in T$,若 $t\in S$,t 在 T 中的邻域取为 t 在 T 中

的欧几里得邻域; 若 $t \in L$, t 在 T 中的邻域基元形如 $\{t\}$ U D, 其中 D E S 中的开圆盘且在点 t 与直线 L 相切. 集合 T 赋予 Niemytzki 切圆盘 拓 扑 称 为 Niemytzki 切圆盘 拓 扑 空 间 (Niemytzki's tangent disc topological space). 易验证, T 是完全正则的 T_1 空间.

图 Niemytzki 切圆盘拓扑空间

显然, T是可分空间. 因为 L 是 T 的不可数的闭离散子空间, 所以 T 不是 cosmic 空间. 故 T 不是 \aleph_0 -monolithic 空间. 由于 T 的子空间 S 和 L 都是度量空间, 所以 S 和 L 都是 T 的

-

⁵⁶ 苏联数学家 В. В. Немыцкий

monolithic 子空间. 这表明两个 monolithic 空间的并未必是 monolithic 空间. ■

引理 6.1.10 若空间 X 具有由 monolithic 子空间组成的局部有限闭覆盖,则 X 是 monolithic 空间.

证明 设{ X_{α} } $_{\alpha\in\Lambda}$ 是空间 X 的局部有限闭覆盖,其中每一 X_{α} 是 monolithic 空间. 让 M 是 X 的任一无限子空间,对于每一 $\alpha\in\Lambda$,令 $M_{\alpha}=M\cap X_{\alpha}$,则 $nw(\overline{M}_{\alpha})\leq |M_{\alpha}|\leq |M|$. 若 $M_{\alpha}\neq\varnothing$,取定 $x_{\alpha}\in M_{\alpha}$,由于{ X_{α} } $_{\alpha\in\Lambda}$ 是局部有限的,所以存在 x_{α} 在 X 中的邻域 U_{α} 和 Λ 的有限子集 Λ $_{\alpha}$ 使得当 $\beta\in\Lambda$ $_{\alpha}$ Λ 时有 $U_{\alpha}\cap X_{\beta}=\varnothing$,从而 $U_{\alpha}\cap M_{\beta}=\varnothing$,因此 $x_{\beta}\notin U_{\alpha}$,于是|{ $\alpha\in\Lambda$: $M_{\alpha}\neq\varnothing$ }| $\leq |M|$, 从而 $nw(\bigcup_{\alpha\in\Lambda}\overline{M}_{\alpha})\leq |M|$. 因为 $\overline{M}=\bigcup_{\alpha\in\Lambda}\overline{M}_{\alpha}$,故 $nw(\overline{M})\leq |M|$. 因此, X 是 monolithic 空间. \blacksquare

定理 6.1.11 若 $C_p(X)$ 是 stable 空间,则对于每一基数 κ 积空间 $C_p(X)^{\kappa}$ 是 stable 空间.

证明 因为 $C_p(X)$ 是 stable 空间,由推论 6.1.7, X 是 monolithic 空间.让 D 是基数 κ 的集合赋予离散拓扑的空间,则 $\{X \times \{d\}\}_{d \in D}$ 是空间 $X \times D$ 的局部有限闭覆盖且每一 $X \times \{d\}$ 是 monolithic 空间,由引理 6.1.10, $X \times D$ 是 monolithic 空间,再由推论 6.1.7, $C_p(X \times D)$ 是 stable 空间.由定理 4.5.16,积空间 $C_p(X)^\kappa$ 同胚于 $C_p(X \times D)$,所以 $C_p(X)^\kappa$ 是 stable 空间.

推论 6.1.12 对于每一基数 κ 积空间 \mathbb{R}^{κ} 是 stable 空间.

证明 取 X 是单点集组成的离散空间,则 C $_p$ (X)= \mathbb{R} 是 stable 空间,所以 \mathbb{R}^κ 是 stable 空间. \blacksquare

练习

- **6.1.1** λ -monolithic 性质是遗传性质.
- **6.1.2** 设 f:X \rightarrow Y 是连续满射. 若 X 是 λ -stable 空间, 则 Y 是 λ -stable 空间(引理 6.1.4).
- **6.1.3** 序数空间[0, $ω_1$)是 stable 空间.
- **6.1.4** 设 X 是紧空间,则 $C_p(X)$ 的每一非空的可分紧子集是可度量化的.
- **6.1.5** 积空间ℝ^α 不是 monolithic 空间.